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A Statistical Design Approach for an Effective Catalyst in the Fenton Reaction  

in Case of Fe3O4-MOF MIL-88b (Fe) in Methylene Blue Degradation Kinetics 

In this paper composites containing metal-organic framework MIL88b(Fe), nanoparticles magnetite (Fe3O4) 

or maghemite (γ-Fe2O3) modified by humic acids or ascorbic acid were synthesized and tested in the decom-

position reaction of methylene blue. Analysis of predictive model based on multi-factor correlation analysis 

“physical-chemical properties — concentration of methylene blue after degradation” showed that in a line of 

selected parameters (initial iron concentration in sample, elemental cell parameter, Fe2+/Fe3+ ion ratio on 

sample surface, total iron ion released concentration, surface area specific, surface charge), a significant fac-

tor influencing Fenton reaction kinetics, is only the total concentration of the released iron ions (p-value = 

0.0162). The influence of separate Fe2+ and Fe3+ ions and reaction time on the Fenton reaction kinetics was 

evaluated by multi-factor analysis. The results demonstrated that concentrations of released iron ions are sta-

tistically significant, with a square of the concentration of ions Fe2+ and the result of the reaction time to the 

concentration of ions Fe3+. A comparison of the sign and the coefficient values shows that an increase in ion 

concentration results in a reduction in methylene blue concentration, thereby accelerating the Fenton reaction 

rate, with Fe2+ ion concentration affecting more than Fe3+. The resulting model is proposed as a means of se-

lecting a sample with the maximum Fenton reaction rate at a given point in time. 

Keywords: Fenton reaction, MOFs, methylene blue, degradation kinetics, MIL-88b (Fe), heterogeneous cata-

lysts, predictive model, multivariate correlation analysis. 

 

Introduction 

The Fenton reaction is widely used for the oxidation of organic compounds and is characterized by the 

occurrence of a series of radical chain reactions during the interaction of iron ions and hydrogen perox-

ide [1, 2]. The most significant contribution to the oxidation process is made by the formation of hydroxyl 

radicals with the participation of a divalent iron cation according to Equation 1 [3]: 

  (1) 

Despite the absence of restrictions associated with mass transfer, and the relatively high rates of homo-

geneous Fenton processes, there are a number of disadvantages. These include the need to strictly maintain 

the pH of the process (рН 2.8–3.5) [4, 5] to achieve optimal catalytic activity, and the formation of a larger 

amount of ferrous sludge (iron hydroxides/oxides) [6, 7]. To overcome these disadvantages, current research 

has largely focused on the development of heterogeneous Fenton catalysts [8]. The leaching of metal ions 

from heterogeneous Fenton reaction catalysts is typically slow, resulting in minimal precipitation during the 

oxidation process [9]. The reusability and wide pH range performance of most heterogeneous catalysts also 

make these systems more attractive for advanced oxidation processes with highly active hydroxyl radi-

cals) [10, 11]. Surface ions of divalent and trivalent iron serve as a source of formation of hydroxyl radicals 

in heterogeneous catalysts for the Fenton reaction [12]. A variety of iron minerals such as hematite, goethite, 

magnetite, ferrihydrite, pyrite, etc. have already been used in heterogeneous Fenton processes for the degra-

dation of a multitude organic pollutants [13–15]. Porous iron materials are of greatest interest, since the sorp-

tion of organic compounds subject to oxidation increases the rate of decomposition [6]. The immobilization 

of iron compounds using a wide range of traditional porous materials including alumina, carbon black, sili-

https://doi.org/10.31489/2959-0663/3-24-15
https://doi.org/10.31489/2959-0663/3-24-15
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.31489/2959-0663/3-24-15
mailto:l.s.bondarenko92@gmail.com
https://orcid.org/0000-0002-3107-0648
https://orcid.org/0000-0002-8389-6871
https://orcid.org/0000-0003-3240-9321
https://orcid.org/0000-0002-4727-8910
https://orcid.org/0000-0001-5870-9483
https://orcid.org/0000-0002-4596-4140


A Statistical Design Approach for an Effective Catalyst … 

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 17 

con dioxide, zeolite, fibers, biosorbents, hydrogels, etc. is common approach [16–19]. More recently, innova-

tive porous materials known as metal-organic frameworks (MOFs) have been used as heterogeneous Fenton 

catalysts [20–22]. 

MOFs are a class of porous materials constructed from metal ions or their clusters connected to each 

other via organic linkers [23]. The principal advantages of these porous materials are their uniform pore dis-

tribution, high surface areas and the possibility of designing the porous structure [24–27]. The pore diameter 

of these materials can be controlled by varying the nature of the structure-forming element (type of metal and 

its chelate environment) and the organic bridging linker and its size. Furthermore the possibility of hierarchi-

cally combining several coordination polymers into one material, allows for the control, selectivity towards 

the adsorbate and, in general, functional properties [28–32]. In particular, iron-containing MOF structures, 

Fe-MOFs, have demonstrated the most significant achievements in the photodegradation of organic pollu-

tants both under visible light and through the Fenton reaction due to the presence of iron-oxo clusters in the 

structure, as well as high specific surface area values [33]. Such clusters demonstrate their inherent absorp-

tion in the visible range and can transfer electrons from O2- to Fe3+ [34]. This facilitates the oxidation of or-

ganic compounds via the photo-Fenton process [35]. Among all known Fe-MOFs, MIL-88b was previously 

shown to be the most efficient heterogeneous Fenton catalyst [36], while also exhibiting the highest photo-

catalytic activity in visible light [37] and biocompatibility [38]. The porous structure of MIL-88b is an organ-

ic-inorganic network with rhombic and hexagonal cavities, in the nodes of which iron oxo clusters are evenly 

distributed [39–41]. Electron-rich organic terephthalic acid ligands included in the MIL-88b structure typi-

cally act as electron donors for the reduction of Fe(III) to Fe(II) [42]. It is also known that MIL-88b does not 

have sufficient chemical stability [43], but this fact is even useful for the sacrificial release of iron ions dur-

ing the Fenton process [44]. 

The combination of MOFs with magnetic particles (MPs) is considered more promising, as it offers the 

potential to combine the advantageous properties of both MOFs and MPs. This could result in enhanced 

chemical stability of the material and the additional possibility of precise positioning with rapid and easy 

release under the influence of an external magnetic field [45, 46]. A comprehensive examination of the Fen-

ton reactivity of diverse iron-based materials can be found in the existing literature. It is observed that the 

most significant factors determining the reaction rate are crystallinity, specific surface area, oxygen vacan-

cies and valence states of iron, as well as the redox potential of the transformation reaction Fe3+/Fe2+ [6, 21, 

22, 37, 47]. However, there is currently no effective tool based on machine learning methods that can be 

used to predict the catalytic activity of iron-containing materials in the processes of decomposition of organic 

pollutants using the Fenton reaction. 

In this study, a predictive model based on multivariate correlation analysis was proposed to enable the 

prediction of the effectiveness of the pro-oxidant properties of the resulting iron-containing materials. The 

concentration of methylene blue (MB) after decomposition is considered as an indicator of the rate of the 

Fenton reaction. The scientific novelty of this study also lies in the preparation of iron-containing Fe-MOFs 

magnetic composites with enhanced pro-oxidant properties for inducing ROS under model conditions due to 

additional functionalization of the structure with humic acids (HA) or ascorbic acid (AA) as chelating agents. 

It is known that HA, which is part of the magnetically active catalyst, also serves as a stabilizer of magnetite 

nanoparticles (NP) [48]. In addition, magnetite NP modified with HA or AA exhibit anti/pro-oxidant proper-

ties due to the presence of donor-acceptor groups. Therefore, in this paper MOF and silane-based composites 

(in particular, tetraethoxysilane and 3-aminopropyltriethoxysilane copolymer, TA) containing magnetite 

(Fe3O4) or maghemite (γ-Fe2O3), as well as the stabilizer HA/prooxidant AA were synthesized and tested in 

the decomposition reaction of MB. We think that this study can clarify the structure-activity relationships of 

different iron minerals in heterogeneous Fenton processes and inspire the development of new heterogeneous 

Fenton catalysts based on MOFs and silanes. 

Experimental 

Synthesis Fe-MOFs Composites 

In this study, a rational method for the synthesis of MOFs was used to target iron-carboxylate MOFs such 

as MIL-88b [49]. To synthesize the coordination polymer of the MIL-88b series, 5 g of terephthalic acid and 

7.35 g of Fe3OAcetate were dissolved in 100 mL of dimethylformamide with stirring on a magnetic stirrer 

(300 rpm) for 30 min. Fe3OAcetate ([Fe3O(C8H4O4)3(H2O)3]Cl) was synthesized according to a previously pub-

lished method [43]. The resulting composites were isolated using a Buchner funnel, washed multiple times with 

distilled water subsequently, and dried in a vacuum (10–3 Torr, 50 °C, 12 h). The yield was 6.82 g. 
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In a typical synthesis of a series of such composites, Fe2+ to Fe3+ chlorides were added at a rate to pro-

duce magnetite of 25 wt % in the final composite (MOF-Fe3О4). At the first stage, the synthesis of magnetite 

was carried out according to the Elmore method [50]. Then, terephthalic acid and Fe3OAcetate were added to 

the resulting reaction mixture. The synthesis was maintained with constant stirring at 900 rpm in an argon 

atmosphere for 60 min. The remaining steps, including precipitation and purification, were similar to those 

used in the preparation of MOFs. The yield was 4.6 g. 

The MOF-HA-Fe3О4 or MOF-АA-Fe3О4 complex was prepared in a manner similar to MOF-Fe3О4, 

with the addition of HA or AA after the magnetite or maghemite suspension preparation stage. The amount 

added of AA and HA was 200 mg (10 wt % based on MOF). At the first stage, the synthesis of magnetite 

was carried out according to the Elmore method [50]. Then 200 mg of the stabilizer HA or pro-oxidant AA 

was added to the reaction system and the resulting mixture was kept for 5 min with stirring 800–1200 rpm at 

the pH≈7. Subsequently, terephthalic acid (C8H6O4, 1.4 g, 0.084 mol) and Fe3OAcetate (2.07 g, 0.0028 mol) 

were added to the resulting reaction mixture for in situ synthesis MOF. The reaction mixture was maintained 

under stirring (800–1200 rpm) on an overhead stirrer for 60 min. The remaining steps, including precipita-

tion and purification, were similar to those used in the preparation of MOF. The yield was 4.5 and 3.5 g for 

MOF-HA-Fe3О4 and MOF-АA-Fe3О4 respectively. 

Synthesis Fe-TA Composites 

The TA is a silica gel functionalized with 3-aminopropyl fragments obtained by the interaction of tetra-

ethoxysilane (T) and 3-aminopropyltriethoxysilane (A). To obtain TA, 10 mL of tetraethoxysilane and 

4.2 mL of 3-aminopropyltriethoxysilane (T:A ratio = 1:0.5, mol/mol) were mixed with 150 mL of deionized 

water. The mixture was continuously stirred on an overhead stirrer (600 rpm, for 10 min) and then shaken on 

a laboratory shaker (150 rpm, for 24 h) at room temperature. The resulting precipitate was washed with dis-

tilled water pH~8 and centrifuged (3000 rpm, 10 min, 4 cycles). The sample was lyophilized and dried in a 

freeze dryer at –37 °C. The yield was 4.57 g. 

In order to obtain the ТА-НА-Fe3+ (1:0.1:0.5 wt/wt/wt), complex (1:0.1:0.5 wt/wt/wt), the iron salts 

were weighed based on the amount of Fe in 1 g of magnetite per 2 g of TA. Portions of 1.562 g FeCl3∙6H2O 

and 0.2 g НА (sodium salt of humic acids, Powerhumus, Humintech, Germany; 5 mmol·g-1 of COOH and 

OH-groups, Mw=8 kD) were weighed and dissolved in 200 mL of deionized water. The solution was then 

dispersed in an ultrasonic bath for 10 min. Subsequently the TA particles were poured into the solution and 

redispersed in an ultrasonic bath for 10 min. The solutions were stirred on a laboratory shaker (170 rpm) for 

18 h. The resulting precipitate was separated using a centrifuge (3000 rpm, 10 min) and dried in air at room 

temperature. The yield was 2.7 g. 

The preparation of magnetically active ТА-НА-Fe2O3 (1:0.1:0.5, wt/wt/wt) composites was carried out in 

several stages. For this purpose, 2 g of TA and 0.2 g of HA were mixed with 200 mL of degassed distilled wa-

ter in a non-inert atmosphere. The mixture was stirred at 1400‒1500 rpm for 30 min. Then, weighed amounts 

of salts were added: 2.7 g of FeCl3∙6H2O, 0.99 g FeCl2∙4H2O and 6 mL 25 % NH4OH, calculated per 1 g of 

Fe3O4. The mixture was stirred at 1400–1500 rpm for 10 min. The remaining stages, including precipitation and 

purification, were similar to those used in the preparation of ТА-НА-Fe3+. The yield was 2.85 g. 

The ТА-AA-Fe3О4 (1:0.1:0.5 wt/wt/wt) complex was obtained by following the same procedure as that 

used for the synthesis of the ТА-HA-Fe3O4, with the exception that the same amount of AA was added in-

stead of HA. The salt samples were dissolved in degassed distilled water in an argon atmosphere at 1400–

1500 rpm. Then 6 m 25 % NH4OH were added and stirred for 30 min. The resulting Fe3O4 precipitate was 

separated using a magnet (0.3 T) and washed once with 200 mL of degassed distilled water. Then AA was 

dissolved in 70 mL of a solution containing magnetite, 200 mL of 96 % C2H5OH (рН=7-8) were added with 

constant stirring (1200 rpm) and 2 g of TA. The solution was stirred on an overhead stirrer (1000 rpm) for 

60 min. The remaining steps, including precipitation and purification, were similar to those used in the prep-

aration of MOFs. The yield was 2.66 g. 

X-ray Diffraction Analysis (XRD) 

The phase composition and primary particle size of the samples were determined by XRD analysis us-

ing the Bragg-Brentano geometry on a Philips X'Pert diffractometer (Philips Analytical, Eindhoven, The 

Netherlands). Cu-Kα radiation (λ = 1.5406 Å) was used as the X-ray source. The collected data were 

smoothed using the Savitzky-Golay algorithm [51]. The measurements were performed at room temperature, 

covering an angular range of 10° < 2Θ < 110° with a step size of 0.025° and a dwell time of 1 second per 

step. 
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Low-Temperature Nitrogen Adsorption Analysis 
The specific surface area and porous structure characteristics of the samples were determined by N2 ad-

sorption-desorption analysis using a Quantachrome instrument. Prior to analysis, the samples were degassed 
and subjected to vaporization. They were then “thermally trained” by heating in a stream of inert N2 gas un-
der vacuum at 150 °C for 30 min. The adsorption isotherms were obtained by measuring the volume of N2 

gas adsorbed by the sample surface as a steady flow of a He-N₂ gas mixture with varying N₂ concentration 
(0 to approximately 1 volume fraction) was passed through the sample at liquid nitrogen temperature (77 K). 

Desorption isotherms were obtained by measuring the volume of N₂ desorbed from the sample surface 

as the N2 concentration in the gas mixture was decreased from approximately 1 to 0 volume fraction. The 
specific surface area and characteristics of the porous structure were calculated from the obtained adsorption-
desorption isotherms using the Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) methods. 

Elemental Analysis 
The content of C, H, N was determined on an elemental analyzer “VarioMicrocube” (ElementarGmbH, 

Germany) using the classical Dumas-Preglia method — by burning the sample in the presence of an oxidant 
in an inert gas current. The Fe content was determined on the atomic absorption spectrometer “AAS-3” 
(Zeiss, Germany). The identification of functional groups of the obtained compounds was carried out on a 
Perkin-Elmer Spectrum 100 Fourier transform infrared spectrometer (USA, 2006) equipped with an attach-
ment for broken total internal reflection (TIR) with a diamond prism of single reflection. The penetration 
depth for a medium with a sufficiently deep refractive index (2.43) at 1000 cm–1 is 1.66 microns. FT-IR-ATR 
spectra were taken in the range of 360–4000 cm–1 at room temperature using 24 scans and a resolution of 
2 cm–1. The baseline of the obtained spectra was corrected in the OPUS program. 

X-ray Photoelectron Spectroscopy (XPS) 
The surface layer of the samples was investigated by X-ray photoelectron spectroscopy. The XPS sys-

tem was equipped with a dual anode (Al, Mg) X-ray source (SPECS XR50) and a hemispherical analyzer 
(SPECS Phoibos 150). The measurements were performed using Al K-α radiation (excitation energy: 
1486.61 eV). The XPS data were analyzed using the CasaXPS software package. The peaks were deconvo-
luted using a Shirley-type background and a combination of Gaussian (50 %) and Lorentzian (50 %) func-
tions. The half-heights of the C1s and O1s peaks were recorded during the analysis. 

Dynamic and Electrophoretic Light Scattering (DLS, ELS) 
The surface charge of the NPs, known as the zeta potential, was determined using ELS. This analysis 

was performed on a NanoBrook Omni particle analyzer (Brookhaven Instruments Corporation, Holtsville, 
NY, USA) at a specific wavelength of 633 nm. The instrument uses a solid-state He-Ne laser as a light 
source and measures scattered light at an angle of 173 degrees. All measurements were performed at a con-
trolled temperature of 25 °C. Prior to analysis, each sample was diluted to a concentration of 0.1 g L–1 with 
an appropriate solvent. A standardized procedure was followed to ensure consistent measurement conditions. 
The diluted sample was dispersed in an ultrasonic bath for 10 seconds to break up any particle aggregates. 
After dispersion, the sample was allowed to rest for a further 100 seconds to reach equilibrium prior to 
measurement. All measurements were performed at a controlled temperature of 25±0.1 °C to minimize ther-
mal fluctuations and ensure reproducibility. The pH of the suspension was adjusted to a range of 3 to 10 us-
ing either dilute NaOH or HCl. The pH was measured using a combination pH electrode for accurate control. 

The results of the studies are presented in Table 1. 

T a b l e  1  

Physicochemical characteristics of composites 

Sample 

Lattice 

parametera 
SSAb 

Elemental  

analysis data 
XPS datac Zeta potentiald 

References 

Å m2 g-1 Fe, % Fe2+/Fe3+ mV 

MOF – 220 18.5 0.66 –8.0 [44] 

MOF-Fe3O4 8.378 197 33.9 1.02 +4.7 [44] 

MOF-HA-Fe3O4 8.387 83 43.2 – –9.1 – 

MOF-AA- Fe3O4  8.389 174 44.4 1.59 –3.2 [44] 

ТА-НА-Fe3+ – 237 15.8 1.08 –25 – 

ТА-HА-Fe2O3 8.301 208 20.2 – +29.5 – 

ТА-AА-Fe3O4 8.381 116 32.5 – –2.5 [52] 
Notes: aThe lattice cell parameter was calculated using XRD data; bSSA — specific surface area determined by low-temperature nitro-

gen adsorption; сThe Fe3+/Fe2+ ratio is calculated using XPS data; dZeta potential determined by ELS at pH=4.6 in deionized water. 
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Results and Discussion 

Evaluation of the Prooxidant Ability of selected Promising Samples in the Fenton Reaction 

To evaluate the prooxidant activity of the obtained iron-containing preparations in the Fenton reaction, 

the well-known reaction of decolorization of MB in the presence of hydroxyl radicals •OH was used. The 

hydroxyl radicals as a result of the disproportionation reaction of 100 mM H2O2, catalyzed by selected prom-

ising NP, at pH 4.5, close to the pH of the tumor [53], and 37 °C, lead to the discoloration of the MB solution 

to colorless cation-free MB. The rate of bleaching of MB was assessed 0, 30, 90 and 180 min after prepara-

tion of the suspension by the change in optical density at a wavelength of 652 nm using UV-Vis-

spectroscopy. The interaction of MB with iron-containing compounds can be described by three processes 

occurring both in parallel and sequentially: (1) sorption of MB on the surface of NP, (2) photodegradation of 

MB, and (3) degradation of MB in the presence of H2O2 as a result of the Fenton reaction. Hernandez et 

al. [54] showed that sorption and photodegradation of MB can be considered as two sequential processes, at 

the same time, 150 min after the start of interaction of the dye with magnetite NP, the concentration of MB 

in the supernatant decreases by half from 20 to 10 mg L-1. This was attributed by the authors to photodegra-

dation of the product as determined by mass spectrometry. Hydrogen peroxide was then added to initiate the 

Fenton reaction, which would increase the rate of dye decomposition. However it is difficult to estimate the 

concentration of MB undergoing separate sorption or photodegradation or degradation during the Fenton re-

action due to the complexity of the processes occurring, a comparison was conducted between the rate of 

change in the optical density of the solution in the presence/absence of H2O2 (during sorption/degradation 

during the Fenton reaction). 

An assessment of the degradation of MB in sorption experiments (in the absence of H2O2) and the Fen-

ton reaction (in the presence of H2O2) showed that all preparations, with the exception of TA-AA-Fe3O4, 

demonstrate a decrease in MB concentration by 60 % or more within 180 min (Fig. 1a). 

The insufficient activity of the TA-AA-Fe3O4 sample can probably be associated with the low concen-

tration of both released ions Fe3+ and Fe2+ (Fig. 1b, c). Thus, the TA-AА-Fe3O4 sample is considered unprom-

ising and is excluded from further sampling. 

The next step is to assess the role of the Fenton reaction as a source of hydroxyl radicals in the reduc-

tion of the MB in the supernatant. In Figure 2 shows the difference between the concentrations of MB sub-

jected to sorption and decomposition under the influence of H2O2 for the remaining four promising samples. 

The data obtained indicates that, the decrease in the concentration of MB in the supernatant for the 

MOF-HA-Fe3O4 sample is a result of the sorption processes, rather than the Fenton reaction. This observa-

tion leads to the conclusion that the MOF-HA-Fe3O4 sample can be excluded from the list of promising sam-

ples. The high sorption capacity of MOF-HA-Fe3O4 is probably due to the presence of HA in its composition 

together with MOF. One can assume a competitive mechanism of sorption and degradation, as a result of 

which sorption processes occur faster due to the greater availability of MB in solution. 

At the next stage, the evaluation of promising samples was carried out based on the reaction rate and re-

action rate constant. Thus, an assessment of the reaction rate showed that the preparations TA-HA-Fe2O3 and 

TA-HA-Fe3+ demonstrate a maximum reaction rate (both sorption and Fenton reaction) 30 min after the start 

of the experiment, while the reaction in the presence of MOF-AA-Fe3O4 reaches its maximum 90 min after 

the start of the experiment, indicating a prolonged effect of the NP. A comparison shows that the rate of the 

Fenton reaction decreases in the series: TA-HA-Fe3+ > MOF-AA-Fe3O4 > TA-HA-Fe2O3. This correlates with 

the release patterns of both Fe3+ and Fe2+: TA-HA-Fe3+ and TA-HA-Fe2O3 released 9 % and 0.1 % Fe3+ after 

30 min, while the concentration of Fe2+ released by the MOF-AA-Fe3O4 only increased within three hours 

and reached 0.45 %. 

The pronounced activity of the TA-HA-Fe3+ sample is associated with the release of Fe3+ from the com-

plex, the rate of which is higher than that of samples with iron oxide NP. This is consistent with the results of 

Wang et al. [55] who found that at low pH values (pH < 4.2), iron ions Fe(II, III) released from the complex-

es predominantly participate in the formation of •OH hydroxyl radicals salts, while at neutral pH values the 

formation of •OH occurs mainly due to the catalytic decomposition of H2O2 by surface iron (which is at least 

50 times more effective than dissolved iron ions) [56], which determines the choice of NP as ion sources 

gland. At the same time, [57, 58] found that the rate of generation of •OH radicals using free Fe2+ is higher 

than with the participation of Fe2+ on the surface of Fe3O4 NP.  
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Figure 1. (a) Catalytic degradation of MB by samples (MB concentration = 11 mg L-1; H2O2 concentration = 100 mM; 

and sample dosage = 1 g L-1
, 0.1 M NaAc buffer pH = 4.5; 37 °C). Solid lines show MB adsorption without H2O2;  

dotted lines show a decrease in the MB concentration with H2O2. (b) Kinetics of the Fe2+ release.  

(c) Kinetics of the Fe3+ release. Data normalized to the iron content 
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Figure 4. (a) Kinetic curve of pseudo-second-order MB degradation and values of degradation rate constants  

(0.1 M NaAc buffer pH=4.5; 100 mM H2O2; 0-180 min; 37 °C; concentration of NPs=10 g L-1;  

concentration of MB=11 mg L-1) (b) Constants of the reaction’s rate 

An assessment of the reaction rate kinetics showed that the Fenton reactions in the presence of three 

promising samples can be classified as pseudo-second order reactions (R2 values are presented in the table) 

with rate constants of 16.7±2.5 s–1, 19.9±3.8 s–1 and 67.7±19.3 s–1 for MOF-AA-Fe3O4, TA-HA-Fe2O3 and 

TA-HA-Fe3+, respectively (Fig. 4a, b). It is obvious that the highest value of the reaction rate constant in the 

presence of TA-HA-Fe3+ is due to the highest rate of release of Fe3+. 

Regression Models 

In order to comprehend the mechanism through which the nature of NP exerts its influence on their pro-

oxidant properties, a predictive model was constructed on the basis of a multivariate correlation analysis of 

the relationship between “physicochemical properties and concentration of MB after degradation”. The pres-

ence of iron ions is the most obvious catalyst for the Fenton reaction, however our objective was to ascertain 

whether other physicochemical characteristics of the samples would affect the rate of the Fenton reaction. In 

this case, the concentration of MB after degradation is an indicator of the rate of the Fenton reaction, and 

therefore the effectiveness of the pro-oxidant properties of the resulting samples. The initial concentration of 

iron in the preparation, the unit cell parameter (for oxides), the ratio of Fe2+/Fe3+ on the surface, specific sur-

face area, zeta potential, and the concentration of released Fe2+ and Fe3+ were used as physicochemical char-

acteristics. At the first stage, a regression model was built to assess the influence of selected six parameters 

(initial iron concentration, unit cell parameter, ratio of Fe2+/Fe3+ on the surface, specific surface area, zeta 

potential, concentration of released Fe2+ and Fe3+ in total) on the concentration of MB for five promising 

samples, as well as MOF and Fe3O4-MOF which had been previously studied. The zeta potential parameters 

and the concentration of the released Fe2+ and Fe3+, as well as the concentration of MB after the Fenton reac-

tion, were selected as the initial experimental variables and were observed over a five-minute period. 

An assessment of the coefficient of determination (adjusted R2 = 0.9343) and p-value = 0.0433 shows 

that a linear model can be used to describe the dependence of the result (MB concentration) on the output 

parameters. The adjusted R2 value indicates that the linear model can account for more than 93 % of the total 

variability while the remaining values cannot be described by it. 

The results of an analysis based on the methodology of surface response made it possible to compose 

the following second order equation: 

 Y = 0.0995 + 0.0063 А + 0.0314 B – 0.1338 C + 0.151125 D – 0.0109 F – 0.0591 E, 

where Y is the concentration of MB in the Fenton reaction (mg L-1), A is the initial concentration of iron in 

the sample (%), B is the unit cell parameter (A), C is the ratio of Fe2+/Fe3+ on the surface of the sample, D is 

the total concentration of released iron ions (Fe2+ and Fe3+, %), F is the specific surface area (m2 g-1), E is 

surface charge (mV). 

 

a) b) 
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Figure 5. Effect of initial iron concentration and total concentration of released Fe2+/Fe3+ on MB degradation 

The equation permitted the evaluation of the influence of a particular factor and the interaction between 

the six factors on the concentration of MB. The sign of the coefficient in the equation indicates the direction 

of the trend in the results: negative and positive coefficients show negative and positive effects, respectively. 

A positive sign and therefore a positive effect indicate that the response changes in direct proportion to a 

change in the level of the factor, and a negative effect with an inverse change in the level of the factor. As 

evidenced by the derived equation (1), the effects of A, B and D on the concentration of MB are positive, 

whereas those of C, F and E are negative. However, the p-value indicates that only the total concentration of 

released iron ions is a significant factor (p-value = 0.0162, parameters with a p-value < 0.05 are considered 

significant, Fig. 5). Thus, the concentration of released iron ions is the only parameter selected that affects 

the kinetics of the Fenton reaction. 

It was of interest to evaluate the influence of separately Fe2+ and Fe3+ and reaction time on the kinetics 

of the Fenton reaction. To this end, a regression model was also built with three parameters (reaction time, 

concentration of released Fe2+ and concentration of released Fe3+) and response (concentration of MB in the 

supernatant after the Fenton reaction). The predicted R² value of 0.7800 is in the agreement with the adjusted 

R² value of 0.9111 with a difference of less than 0.2. Adeq Precision, indicating the signal-to-noise ratio, is 

17.702, which is significantly greater than 4, indicating adequate signal and the ability to use the model to 

predict the kinetics of the Fenton reaction (Fig. 6). The model's F-value of 31.89 and p-value < 0.0001 indi-

cate that the model is significant. There is only a 0.01 % chance that such a large F value could arise from 

noise. Furthermore, there is a strong correlation between the predicted and experimental values. 

 

 

Figure 6. Dependence of predicted values on predicted values 
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Based on the obtained coefficients, a quadratic regression equation was compiled: 

 Y = –2.24626 – 0.1317 А – 2.7981 B – 2.5506 С – 0.0832 АВ +  

 + 0.0779 АС – 2.928 ВС + 0.1318 А2 + 0.1392 В2 – 0.1642 С2, 

where Y is the concentration of MB in the Fenton reaction (%), A is the reaction time (min), B is the concen-

tration of released Fe2+ (%), C is the concentration of released Fe3+ (%). 

According to the p-value parameters (Table 2), the concentrations of released iron ions, the square of 

the Fe2+ ion concentration, and the product of the reaction time and the Fe3+ concentration are statistically 

significant. 

T a b l e  2  

Data of ANOVA for quadratic model 

Source Sum of Squares df Mean Square F-value p-value  

Model 2.11 9 0.2342 31.89 < 0.0001 significant 

A-Time 0.0244 1 0.0244 3.33 0.0848  

B-Fe2+ 0.0627 1 0.0627 8.54 0.0091  

C-Fe3+ 0.0486 1 0.0486 6.61 0.0192  

AB 0.0107 1 0.0107 1.46 0.2425  

AC 0.0206 1 0.0206 2.81 0.1111  

BC 0.0662 1 0.0662 9.01 0.0077  

A2 0.0743 1 0.0743 10.12 0.0052  

B2 0.0200 1 0.0200 2.72 0.1163  

C2 0.0183 1 0.0183 2.49 0.1323  

Residual 0.1322 18 0.0073    

Cor Total 2.24 27     

 

Comparison of the sign and magnitude of the coefficients shows that an increase in ion concentration 

leads to a decrease in the concentration of MB. This implies that the rate of the Fenton reaction increases, 

with the concentration of Fe2+ exerting a greater influence than Fe3+. This is consistent with the fact that the 

Fenton reaction initiated by Fe2+ is significantly faster (k = 63 M–1·S–1) than the reaction occurring during the 

reduction of Fe3+ to Fe2+ (k = 0.001–0.02 M–1·S–1) [36]. Notably, the effect of time on the reaction is indirect, 

and occurs in combination with the concentration of Fe3+. 

 

   
a b c 

Figure 7. Response surfaces for the MB degradation value for different combinations of factors:  

concentration of released Fe3+ and Fe2+ (a), concentration of released Fe2+ and time (b)  

and concentration of released Fe3+ and time (c) 

It can be demonstrated that the maximum reaction rate can be achieved at different times by controlling 

the concentration of released iron ions. For example, in some cases, a rapid effect of the sample in the first 

minutes of its administration is required. Then, to achieve the maximum effect (MB concentration in the su-

pernatant should be 0 % 5 min after administration), 0.13 % Fe2+ and 1.78 % Fe3+ are required (Fig. 7a). 

Therefore, if we assume that the relationship between the concentration of the initial sample and the ions re-
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leased by it is linear, then using the MOF-AA-Fe3O4 sample as an example, to achieve the maximum reaction 

rate in 5 min, it is necessary to introduce 47.6 g L-1 of the sample. On the other hand, when the concentration 

of released Fe2+ is reduced to 0.12 %, the concentration of Fe3+ released to degrade the entire MB within 5 

min is 1.41 % (Fig. 7c). Thus, the use of TA-HA-Fe3+ would allow achieving such a reaction rate using only 

1.6 g L-1 of the sample. Thus, it is more rational to use the sample MOF-AA-Fe3O4 to achieve a prolonged 

prooxidant effect 3 h after insertion, and TA-HA-Fe3+ to achieve its maximum effect within the first 30 min 

after insertion. 

To test the model, samples of MOF, MOF-Fe3O4, Fe3O4-MOF [43, 44] and Fe3O4-SiO2 were selected 

and the degradation of methylene blue, as well as the release of Fe2+ and Fe3+ 60 minutes after the start of the 

experiment, were assessed (Supplementary Materials, Table S1, Fig. S1). The experimental data values cor-

relate with the theoretical ones, the value of the corrected determination coefficient R2 was 0.87. Thus, the 

obtained model can be successfully used to predict the degradation of methylene blue in kinetic experiments 

based on the concentration of released Fe2+ and Fe3+ ions. The limitation is the difficulty in extrapolating the 

model when using data that are outside the ranges of the input parameters. 

Conclusions 

This paper presents the synthesis and testing of composites containing the metal-organic framework 

MIL88b(Fe), as well as nanoparticles of magnetite (Fe3O4) or maghemite (γ-Fe2O3) modified by humic acids 

or ascorbic acid in the decomposition reaction of methylene blue. The proposed predictive model based on 

multi-factor correlation analysis of “physical-chemical properties — methylene blue concentration after deg-

radation” showed that in a line of selected parameters (initial iron concentration in sample, elemental cell 

parameter, Fe2+/Fe3+ ion ratio on sample surface, total iron ion released concentration, surface area specific, 

surface charge), a significant factor influencing Fenton reaction kinetics, is only the total concentration of the 

released iron ions (p-value = 0.0162). Evaluation of the influence of separate Fe2+ and Fe3+ ions and reaction 

time to the Fenton reaction kinetics by multi-factor analysis showed that concentrations of released iron ions 

are statistically significant, with the concentration of Fe2+ ions affecting more than Fe3+. The developed mod-

el is proposed for forecasting the prooxidant properties of preparations. 
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