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Development of Novel Wheat Waste-Derived Biochar  

and Its Potential in Pharmaceutical Wastewater Treatment 

The rising concentration of pharmaceuticals in wastewater presents significant environmental and health chal-

lenges. This study aims to develop an iron (III)-activated carbon-enriched material derived from local agricul-

tural plant waste to effectively remove pharmaceutical contaminants. The research investigates the material’s 

composition, structure, morphology, and adsorption capacity of the material, focusing on wheat waste-

derived biochar. The synthesis process includes an initial carbonization, chemical modification with FeCl3 

using the wet impregnation method, and a second carbonization and washing step. The resulting carbona-

ceous material was characterized using the CHNS elemental analyzer, FTIR, XRD and SEM-EDX spectro-

scopic techniques. The results indicate the formation of a carbonaceous material with a carbon content of 

77.09 %, enriched with a highly crystalline graphite phase and a porous structure containing iron (II, III) ox-

ides. Notably, this sorbent efficiently reduced the ibuprofen concentration, with a sorption capacity of 

433 mg•g⁻¹. Among the pseudo-first-order (PFO), pseudo-second-order (PSO), intraparticle diffusion and 

Elovich models used to describe the adsorption kinetics, the PSO model (types 1-2) fits successfully, indicat-

ing chemisorption-controlled kinetics. This study highlights the potential for converting agricultural waste in-

to a carbonaceous material with improved structure and morphology, and demonstrates its high efficacy in 

purifying water from pharmaceutical contaminants. 

Keywords: waste wheat, carbonization, biochar, activated carbons, iron oxides, adsorption, ibuprofen, kinetic 

models, pseudo-second-order kinetic model. 

 

Introduction 

Carbonaceous materials obtained from agricultural residues have great potential for development of 

sustainable technologies. Recent studies have demonstrated that biochar is not only applicable but also under 

development as an effective sorbent [1–4], electrode-active material [5–8], and catalyst [9–11]. These studies 

reveal the potential of waste streams to contribute to circular bioeconomy strategies that transform resource 

use, an issue that will highlight the evolving environment of sustainable practices [12]. 

Currently, there is an increasing in demand for active pharmaceutical compounds, and therefore, the 

pharmaceutical industry continues to increase the production of drugs. As a result, discharges of industrial 

effluents are regularly increasing, raising serious concerns about their harmful effects on human health and 

the aquatic environment. Ibuprofen (IBU), 2[4-(2-methylpropyl)phenyl]propanoic acid, is a globally recog-

nised anti-inflammatory drug, widely used in medical practice as an antipyretic, analgesic and anti-

inflammatory agent [13–15]. In the US, UK, and Poland, ibuprofen consumption is approximately 300, 162 

and 58 tons per year [16]. It is metabolised in the body and the environment to form ibuprofen derivatives. It 

has been found that when ibuprofen is released into the environment it is initially degraded to form hydrox-
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ylated ibuprofen and ibuprofen carboxylic acid; benzoquinone, quinone and catechol-like compounds are 

also formed during the degradation of ibuprofen [17]. Chorpa and Kumar have proposed a way for the deg-

radation of ibuprofen, indicating various intermediate products formed during degradation (Fig. 1) [18]. 

 

 

Figure 1. A way of ibuprofen degradation with various intermediate products.  

Reprinted from Ref. [18] with permission under the license CC BY-NC-ND 4.0 International 

Therefore, pharmaceutical contaminants need to be removed from the aquatic environment. As report-

ed, electrocoagulation [19], oxidation [20, 21], membrane filtration [22], and adsorption [21] are recom-

mended. Although these methods are effective in achieving high percentages of IBU removal, they also have 

drawbacks, including energy consumption and cost. Herein, adsorption is the most promising water treat-

ment method in terms of effectiveness and environmental sustainability. Moreover, utilising waste biomass 

further reduces the price of this purification process. 

According to the Food and Agriculture Organization of the United Nations [23], Kazakhstan is a lead-

ing wheat exporter, producing 16.4 million tonnes of wheat in 2022. This extensive production generates 

substantial biowaste (straw, husk, etc.). However, the literature review revealed limited studies utilising 

waste wheat in polluted water treatment; no data describing local biochar produced from wheat waste bio-

mass. A critical aspect of the relevance and practical significance of this study is the proposal of a carbon 

sorbent from domestic agricultural waste to purify water bodies from ibuprofen. This study aims to produce 

biochar derived from local biowaste and test its adsorption capacity towards ibuprofen in an aqueous solu-

tion. It is expected that biochar derived from wheat waste will have an enhanced adsorption capacity for ibu-

profen compared to other materials. 

Experimental 

2.1 Chemicals and Materials. All chemicals (1 % FeCl3, 0.1 M NaOH solution) were analytical grade. 

DI water was used as the solvent. Ibuprofen sodium salt (Sigma Aldrich) was used to prepare its working 

solution. 

2.2 Preparation of Biochar. Wheat wastes were used as an initial substance to prepare biochar using a 

three-stage treatment consisting of the first carbonisation (temperature of 600 °С, heating rate of 20 °C/min, 

1 h under the Ar atmosphere), chemical modification (agent of 1 % FeCl3 solution, solid-to-liquid ratio of 

1/10 in wt.%) and the second carbonisation (under the same conditions as in the first stage). The chemical 

modification stage was conducted by immersing the intermediate into the agent’s solution for 24 h at room 

temperature (21 °C0.5 °C). After the second carbonization, the product was washed with hot water 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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(90 °C3 °C) several times until a neutral pH value and dried at a temperature of 115 °C till its weight was 

constant. The final product — biochar — was then used in materials characterization and sorption tests as a 

sorbent. 

2.3 Determination of the Ash Content. The biochar samples were oven-dried at 105 °C and then heated 

in a covered crucible in a muffle furnace at 750 °C for 6 h. The mass of material remaining after incineration 

refers to ash [24]. The ash test was conducted in three parallels to evaluate the standard deviation (SD). 

2.4 Materials Characterization. The CHNS test (carbon (C), hydrogen (H), nitrogen (N) and S (sulfur)) 

was conducted using the Unicube organic elemental analyser. The % oxygen is obtained by recording the 

difference between 100 and the CHNS+ash content (in %) [24]: 

 ( )O 100 C H N S Asubs = − + + + + , 

where C, H, N, S and A are the contents (in %) of carbon, hydrogen, nitrogen, sulfur and ash, respectively. 

The BET analysis (low-temperature nitrogen adsorption) on the BSD-66OS A3 apparatus evaluated the 

biochar’s porous structure and specific surface area. The samples were prepared at 200 °C and maintained at 

a residual pressure of at least 0.001 bar. Nitrogen adsorption and desorption isotherms were recorded at 

77 K, utilising liquid nitrogen in the relative pressure range from 0.005 to 0.991 bar. Standard analysis of the 

results was performed using the Barrett-Joyner-Halenda (BJH) method, which employs a conventional cylin-

drical pore model. This analysis included the calculation of several parameters: the total surface area (ƩS), 

the micropore surface area (μS) using the Brunauer-Emmett-Teller (BET) method, the total pore vol-

ume (ƩV), the micropore volume (μV), and the average pore diameter (Dav). These calculations considered 

both micro- and mesopores and utilised the DFT approach. 

The FTIR spectroscopic measurements were carried out using an Alpha II FTIR spectrometer (Bruker) 

operating at a frequency range between 4000 and 400 cm–1 at room temperature. The samples were prepared 

by mixing KBr and the BC sample (ratio 99.5 %:0.5 %) by weight and pressed into a disc before analysis, 

which consisted of 32 scans with a resolution of 1 cm–1. 

The SEM-EDX analysis (n=3) used the Phenom ProX Scanning Electron Microscope (Thermo Scien-

tific) (high voltage of 15kV) with the BSD detector. 

X-ray diffraction patterns were recorded using a D8 Advance Eco diffractometer (Bruker) in Bragg-

Brentano geometry in the angular range of 14...100° (2θ) (step 0.05) at room temperature. An X-ray source 

was a copper tube with radiation (λ = 1.54060 Å). 

2.5 Spectrophotometric Analysis of Ibuprofen. For the spectrophotometric determination of an aqueous 

solution of IBU, its powder was dissolved in a previously prepared 0.1 M NaOH solution and shaken for 

about 10 min. After filtration, the aqueous solution of ibuprofen was subjected to spectrophotometric analy-

sis. Spectrophotometric measurements were done according to [25] at a wavelength of 273 nm on a spectro-

photometer Specord 250. A calibration curve is given in Figure 2. 

 

 

Figure 2. Optical density – concentration dependence for spectrophotometric analysis of IBU 
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2.6 Ibuprofen Adsorption Tests. Adsorption tests were carried out at static conditions according to [26]. 

In adsorption tests, a biochar sample (10 mg) was immersed in an IBU solution (20 ml). All adsorption tests 

(n = 3) were conducted at a controlled temperature (21 °C0.5 °C). The total adsorption time was up to 

60 min. The liquid phase was then separated by filtration. To determine the residual concentration of IBU in 

the liquid phase, the optical density was measured at 340 nm wavelength. The adsorption value (a) was cal-

culated as follows: 

 
( )0C C

m m

 −
 = = , 

where   is a solution volume on which adsorption is carried out, L; С0 is the initial concentration of 

I (mol·L-1); C is the residual concentration of IB (mol·L-1), and m is the weight of sorbent (g). 

Results and Discussion 

3.1 Material Characterisation of Biochar. Table 1 demonstrates the CHNS results and waste wheat-

derived biochar’s ash and oxygen content. 

T a b l e  1  

Elemental composition of biochar, ashness and the H/C, O/C ratios 

Initial material C, % H, % N, % S, % A, % Osubs, % H/C O/C Ref. 

Rapeseed wastes 72.60 4.90 6.70 0.50 – 15.30 0.07 0.21 [27] 

Palm kernel shell 47.28 5.32 0 0 – 47.40 0.11 1 [28] 

Rice husk 41.11 4.87 0.80 0.04 – 53.17 0.12 1.29 [29] 

Coconut fibers 44.89 5.19 0.86 0.03 – 48.64 0.12 1.08 [29] 

Durian peel 39.30 5.90 1.00 0.06 4.84 53.74 0.15 1.37 [30] 

Waste wheat 77.090.22 1.910.02 4.150.04 0 12.120.20 4.710.38 0.02 0.06 
Present 

study 

 

As shown in Table 1, wheat-derived biochar has the highest carbon content of 77.09 % compared to rice 

husks, with a carbon content of 41.11 % [29]. Another noticeable difference is the O content, which is 

53.74 % for durian-derived biochar, which is 13 times higher than wheat-derived biochar and 3-4 times 

higher for rapeseed residue. The lower the O/C and H/C atomic ratios, the higher the degree of aromaticity 

and stability of the carbonised material [31]. The relatively low value of the H/C ratio, 0.02, might be at-

tributed to the elimination of dehydration and dehydrogenation reactions and the cleavage and cracking of 

weak hydrogen bonds during conversion within the biochar [32]. The O/C ratio lowers if a high degree of 

carbonisation occurs by removing oxygen through dehydration and decarboxylation reactions [33]. These 

data have revealed that biochar might demonstrate long-term chemical stability. 

Regarding the porosity of biochar, the porous structure could be derived from the structure present in 
the raw biomass or was formed during the devolatilization process of gasification. In [34], wheat bran bio-

char has a lower specific surface area (SSA) of 25 m2∙g-1. In comparison, Vaghela et al. [35] reported that 

wheat straw biochar produced at 600 °C has a SSA of approximately 70.12 m2∙g-1. Zhu et al. [36] highlighted 

the contribution of iron oxide particles to the biochar pores. According to the BET analysis, the SSA of bio-

char was 227.84 m2∙g-1 with the pore volume distribution as follows: micropores (0.35–2 nm), mesopores (2–

10 nm and 10–50 nm) and macropores (50–200 nm) are 70.48 %, 22.45 %, 3.42 % and 0.65 %, respectively. 

The increased SSA is most likely due to the contribution of iron oxides. 

The presence of iron-containing compounds in the production of activated carbon reduces the 

temperature required for cellulose hydrolysis, resulting in a notable depolymerisation reaction that produces 

a significant amount of low-molecular-weight hydrocarbons. Iron chlorides disrupt the glycosidic bonds in 

cellulose at pyrolysis temperatures between 200 °C and 300 °C, simultaneously releasing water molecules 

from the hydrated salt and generating glucose monosaccharides. Within this temperature range, the hydrated 

iron chloride decomposes into amorphous FeOOH through specific chemical reactions [36]: 

 3 2 2FeCl 2H O FeOCl H O 2HCl+   +  (1) 

 2FeOCl H O FeOOH HCl  +  (2) 
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The second stage, occurs at pyrolysis temperatures above 330 °C. As the activation temperature in-

creases, glucose molecules successively undergo ring opening, dehydration, and cyclisation into 5-hydroxy-

methylfurfural, which, after decarbonylation, is converted to furfural [37]. With increasing temperature, 

FeOOH first decomposes into Fe2O3, then the carbon surface is reduced, and Fe3O4 is formed via the follow-

ing chemical reactions [37]: 

 2 3 22FeOOH Fe O H O +  (3) 

 2 3 3 43Fe O C 2Fe O CO+  +  (4) 

Iron oxides are crucial in catalysing microporosity formation within the carbon matrix. Overall, porous 

activated carbons are formed in the presence of iron species with highly stable Fe bound to their surface [38]. 

The EDS mapping of biochar’s surface demonstrated its elemental composition and distribu-

tion (Fig. 3). 

 

 

Figure 3. EDS mapping pictures and elemental content of biochar’s surface 
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The EDS maps indicated that biochar produced from waste wheat is rich in elements such as carbon, ni-

trogen, and oxygen, which are relatively evenly distributed; however, some areas show higher or lower con-

centrations of these elements. In contrast, iron is concentrated in specific areas, particularly within pores, as 

suggested. 

The XRD study demonstrates that biochar has a semicrystalline structure (Fig. 4). This is indicated by a 

broad signal between 20° and 30°, typically characteristic of the stacking structure of aromatic layers associ-

ated with highly crystalline graphite (graphite 002) [39, 40]. 

 

 

Figure 4. XRD spectrum of biochar (final product) 

The sharp diffraction peaks at 32°, 35°, and 45° could be attributed to the plane interlayer reflections 

Fe2O3·FeO [41]. According to the database of the Joint Committee on Powder Diffraction Standards data-

base (JCPDS #75-0449), Fe3O4 appeared at 30.5°, 35.7° and 43°, which are identical to crystal plane index 

(220), (331) and (400) [42]. In [43], characteristic bands of hematite crystals are located at 2θ of 32.0°. 

Based on this, it could be suggested that iron (II, III) oxide particles were successfully injected into the car-

bon matrix during the modification-carbonization process. 

The FTIR spectroscopy experiment was performed to identify the functional groups of waste wheat-

derived biochar (Fig. 5). 

 

 

Figure 5. FTIR spectrum of biochar (final product) 
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Biochar’s functional groups matched those of the references [44–46]. The spectral analysis shows that 

the three-stage treatment effectively removes or alters the functional groups present in the carbon material, 

resulting in a more graphitic carbon structure with fewer detectable functional groups than the FTIR spec-

trum of the intermediate biochar product after the first carbonisation stage, as illustrated in Figure S1 and 

Table S1 (see the supplemental file). For example, a peak at 1536 cm–1 may be attributed to the C=C stretch-

ing in the aryl double bond [47]; another peak at 1015 cm–1 likely corresponds to the C–OC or C–OH bonds 

[48]. Additionally, a peak at 580 cm–1 might be assigned to Fe–O vibrations [49, 50]. 

3.2 Ibuprofen Adsorption on Waste Wheat-Derived Biochar. The experimental data (Fig. 6) show that 

the adsorption process reached equilibrium after 10 min, and then the adsorption value remained stable over 

time. The readily accessible active sites cause the initial rapid adsorption, while the plateau indicates equilib-

rium with IBU molecules entering and exiting the active sites at the same rate. The same behaviour has pre-

viously been detected for ibuprofen adsorption using commercial activated carbons and polymeric resin [51], 

cellulosic biomass [52], and sonicated activated carbons [53]. 

 

 

Figure 6. Adsorption kinetic curve of ibuprofen onto biochar 

Comparing the adsorption capacity of the current sorbent with the references shows that, in some cases, 

the ibuprofen adsorption capacity is higher for the biochar of interest (Table 2). 

T a b l e  2  

Comparison of waste wheat-derived biochar with others 

Initial biomass 
Type of activa-

tion/modification 
SSA, m2·g-1 

Ibuprofen uptake  

capacity, mg·g-1 

Kinetic 

model 
Ref. 

Sugarcane bagasse 
Chemical 

557.00 (for raw biochar) 
13.51 PSO 

[54] 
Steam 11.90 PSO 

Bovine bones Chemical (ZnAl) 170.00 cm2·g-1 (external) 1032.81 n.r.* [55] 

Chrysanthemum wastes 
Magnetic 194.00 167.00 PSO 

[56] 
Non-magnetic 220.00 140.00 PSO 

Rice husk Chemical (H3PO4) n.r.* 239.80 PSO [57] 

Babassu coconut shell Ultrasound 732.00 134.00 PSO [58] 

Recycled textile materials Steam 710.00 53.90 Elovich [59] 

Sunflower seed husk Chemical (H3PO4) 378.80 251.10 Elovich [60] 

Cork powder Both chemical/physical 1060.00 393.40 PSO [61] 

Wheat husk Chemical (FeCl3) 227.84 433.00 PSO 
Present 

study 
 Note: * — not reported. 
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It is known that higher SSA generally correlates with better adsorption capacity, but other factors such 

as pore size distribution and surface functional groups also play a crucial role [62]. These differences in the 

surface and porosity of resulting biochars may also be due to the experimental preparation conditions, in-

cluding pyrolysis temperature and time, or the additional activation steps, such as using gas or steam. It is 

worth noting that, according to the European Biochar Certificate Standard (EBC), biochars should have an 

SSA larger than 150 m2·g-1 [56, 63]. 

The adsorption kinetics describes the solute uptake rate, and its knowledge is essential for a better un-

derstanding of the reaction mechanism and designing appropriate adsorption technologies. It is known that 

the kinetic model is fitted best if there are three conditions to be satisfied: 1) a reasonable match of experi-

mental and calculated values of adsorption uptake, 2) the regression value (R2) should be close to 1, 3) the 

values of chi-square test (χ2) and the sum of the square of the error (SSE) should be minimum. Pseudo-first 

order (PFO) and pseudo-second-order (PSO) kinetic equations [64], as well as the intraparticle diffusion 

model and Elovich model, were tested to fit the experimental data obtained from the batch experiments (Ta-

ble 3), where 1 1 1

1 2  min ,    g mg mink k− − −         are the PFO and PSO rate constants, eq  [
1mg g− ] and  

tq  [
1mg g− ] are the adsorbate uptake at equilibrium and at time t, respectively, DiffK  [

1 1/2mg g min− −  ] is a 

measure of diffusion coefficient, C  [
1mg g− ] is intraparticle diffusion constant,   [

1 1 mg g min− −  ] is the 

Elovich initial adsorption velocity,   [
1 g mg− ] is the Elovich constant, 2R  is the regression coefficient. 

T a b l e  3  

Kinetic models for the ibuprofen adsorption parameters onto biochar 

PFO 1k  eq  2R  

( ) ( ) 1ln lne t eq q q k− = −   0.0711 67.26 0.4203 

PSO, type 1 2k  eq  2R  

2

2

1 1

ee
q qk q

 
= +  

 
 0.0015 454.54 0.9975 

PSO, type 2 2k  eq  2R  

2

2

1 1 1 1

ee
q qk q

    
= +    

    
 0.0073 588.23 0.9967 

PSO, type 3 2k  eq  2R  

2

2 2e e tk q k q q
q


= −  0.0005 564.06 0.6574 

PSO, type 4 2k  eq  2R  

2

1
e

e

q
q q

k q





 
= −  

 
 0.0004 962.68 0.6574 

Intraparticle diffusion C  DiffK  2R  
1/2

Diffq K C =  +  225.38 36.76 0.4836 

Elovich     2R  

( )
1

ln 1q =  +


 286.71 0.0052 0.7344 

 

Firstly, the PFO model calculates the kinetic parameters k1 and qe [65]. The k1 value describes how 

quickly the adsorption equilibrium is reached in the studied system. However, since the adsorption rate is 

related to k1 and   values; they must be considered together. For example, if the value of k1 is low and the 

e tq q−  value is high, it indicates slow adsorption. Generally, the PFO model corresponds to a high initial 

adsorbate concentration, and adsorption is not controlled by adsorption at the active sites. Sometimes, the 

PFO model may reflect external/internal diffusion. Similar to the PFO-k1 rate constant, the PSO-k2 rate con-

stant is also used to describe the rate of adsorption equilibrium [66]. This model accounts for some adsorp-
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tion processes requiring more prolonged time to fill the adsorption sites [67]. The adsorption rate is assumed 

to be affected by the interaction of adsorption sites on the adsorbent surface with the adsorbent throughout 

the adsorption process. The intraparticle diffusion model describes a transport process where species move 

from the bulk solution to the solid phase (sorbent) [68]. It is more applicable for porous adsorbents. Although 

the Elovich model has been developed to describe interactions between a solid/gas interface, it has effective-

ly defined processes that occur on a solid/liquid interface [69]. It is reported that the model considers that the 

actual solid surface is energetically heterogeneous and that the desorption process and interactions between 

adsorbed species do not significantly affect the adsorption kinetics. 

In this study, the sorption kinetics may be described by a PSO model due to the values of regression co-

efficient (R2) and closeness of experimental and theoretical adsorption capacity (qe) (Table 3). According to 

Ghaedi et al. [70], the fit of the PSO model indicates that the process is controlled by chemisorption or ion 

exchange due to the porous surface of the carbonaceous materials. Also, the fitting of this model might be 

explained by the occurrence of multilayer adsorption and vertical packing of adsorbate in active sites. An-

other study [71] revealed that the fit of the experimental data to the PSO model indicates the adsorption of 

the pollutant by two active sites simultaneously. Also, the chemisorption might be the limiting stage of the 

kinetic processes when valence bonds between the sorbate and the adsorbent are shared or exchanged. 

Various key processes are involved in the adsorption of ibuprofen onto biochar, including hydrogen 

bonding, chemical adsorption, pore filling, electrostatic interactions, and π-π stacking. Primarily, it’s essen-

tial to consider the surface functional groups, such as carboxylic and hydroxylic, that facilitate hydrogen 

bonding and enhance adsorption. Additionally, the PSO kinetic model is likely indicative of chemisorption. 

Lastly, the pores present are adequately sized to accommodate ibuprofen. According to [64], the predicted 

size of the molecular structure of ibuprofen is 1.03 nm×0.52 nm×0.43 nm. Considering the pore volumes and 

sizes, alternative pore filling is also possible for ibuprofen held by biochar. Altogether, these interactions 

facilitate the effective capture of ibuprofen within the porous structure of biochar. 

3.3 Spent Adsorbent Disposal. Proper disposal of used adsorbents is essential due to significant envi-

ronmental concerns. The World Health Organization (WHO) has issued important guidelines titled “Guide-

lines for Safe Disposal of Unwanted Pharmaceuticals in and after Emergencies” [72], which emphasise that 

adsorbents infused with ibuprofen can be disposed of safely and responsibly by following established phar-

maceutical disposal methods. This approach protects public health and helps safeguard the environment from 

potential contaminants. The adsorption of ibuprofen onto biochar is predominantly irreversible, emphasising 

its effectiveness as a long-term solution for treating water contaminants. Once ibuprofen is adsorbed, it re-

mains securely bound to the sorbent surface, making it an ideal candidate for reliable pollution management. 

Incineration is a preferred disposal technique for spent adsorbents, ensuring the destruction of any residual 

pharmaceuticals. Since ibuprofen-loaded biochar boasts a high calorific value, it provides an eco-friendly 

alternative to coal and allows energy recovery through incineration or gasification for syngas production. 

Moreover, various other disposal methods, such as regeneration, have also been explored, further enhancing 

the viability of biochar in sustainable waste management. 

Conclusions 

The findings of this study indicate that local agricultural waste, such as wheat residue, can be effective-

ly converted into biochar infused with a mixture of iron (II, III) oxides. This biochar has a unique composi-

tion, rich in carbon (77.09 %), with a specific surface area of 227.84 m2 g–1, predominantly characterised by 

micropores (70.48 %). Notably, the material has a high adsorption capacity for ibuprofen, reaching a sorption 

capacity of 433 mgg–1. Kinetic studies have shown that a pseudo-second-order model describes the adsorp-

tion process. Waste wheat presents a promising alternative for the development adsorbents to remove ibu-

profen from aqueous solutions. This innovative approach tackles the challenge of agricultural waste disposal 

and provides a cost-effective and sustainable solution to improve water quality. The use of this method 

makes a significant contribution to environmental protection and effective water treatment strategies. 
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