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Gel-Phase Synthesis and pH-Sensitive Swelling-Structure Relationships  

of N-Carboxyethylchitosan 

The applicability of native chitosan-based compositions is constrained by their limited solubility in weakly 

alkaline and neutral media, a consequence of inherent structural features. To overcome this limitation, car-

boxyalkylation strategies such as the gel-phase Michael synthesis of N-carboxyethylchitosan (N-CEC) were 

investigated with a focus on optimizing reaction parameters to enhance yield and tailor biopolymer proper-

ties. Structural confirmation of the synthesized polymers was performed via FT-IR and SEM, while elemental 

analysis quantified the degree of substitution (DS), which correlated with temperature in the following way: 

DS = 0.96–1.10 at 50 °C, 1.07–1.12 at 60 °C and 1.16–1.32 at 70 °C. Porosity measurements indicated pore 

sizes ranging from 50 to 200 µm in all samples; however, total porosity varied significantly, reaching a max-

imum of 15 % at 70 °C and decreasing to 4–10 % at lower temperatures. N-CEC exhibited pH-dependent 

swelling, with minimal expansion (100–150 %) at low pH and a 2–3-fold increase at pH > 7, which was at-

tributed to COO⁻ group formation. These findings position N-CEC as a promising material for pH-responsive 

applications. 

Keywords: carboxyethylchitosan, biopolymer, gel-phase synthesis, derivatization, Michael reaction, 

pH-sensitive swelling, porosity, green chemistry 

 

1. Introduction 

Chitosan is a natural polymer that has garnered significant attention due to its versatile applications in 

various fields. This aminopolysaccharide is typically derived through the deacetylation of chitin, which is 

predominantly obtained from crustacean exoskeletons, including those of shrimp and crabs [1–3]. The 

unique properties of chitosan, such as its biodegradability, low toxicity, and antimicrobial activity, make it an 

important material for various industries, particularly in biotechnology, medicine, water treatment and agri-

culture [4–8]. One of chitosan’s most notable features is its excellent biocompatibility, enabling its use in 

various biomedical applications without provoking adverse reactions [4, 9]. This makes chitosan an ideal 

candidate for drug delivery systems, wound healing, and tissue engineering [10–15]. Its polyelectrolyte 

properties provide the interaction with negatively charged molecules, such as DNA and RNA, making it a 

useful material for gene delivery applications [16, 17]. In addition to its primary applications, chitosan exhib-

its a wide range of other valuable properties, including anti-inflammatory, antioxidant, antimicrobial, anti-

fungal, antihyperglycemic, and antitumor activities. These characteristics make it a highly versatile com-

pound with great potential in the development of novel therapeutic agents and in improving overall quality of 

life [6, 18–26]. 

Chitosan-based injectable hydrogels possess high potential for biomedical applications; however, their 

pH sensitivity limits their application in alkaline and neutral media [27]. To address this, chitosan polymers 

intended for practical use in vaccine delivery often require chemical modifications to improve their stability 

and solubility [28]. One of the primary strategies involves structural modification of the chitosan molecule to 

overcome its poor solubility under neutral and basic conditions [29, 30]. 
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The solubility of chitosan can be improved by introducing various functional groups, such as carbox-

ymethyl, sulfonic, or quaternary ammonium groups [28–34]. In addition to better solubility, chitosan deriva-

tives often demonstrate superior biological activity compared to the native polymer [35]. Chitosan deriva-

tives with substituted functional groups at both the –OH and –NH2 reactive centers exhibit higher bactericid-

al activity against both Gram-positive and Gram-negative bacteria [36, 37]. Furthermore, quaternized chi-

tosan derivatives have demonstrated higher antifungal activity than unmodified chitosan [38]. These modifi-

cations are particularly significant in applications such as wound dressings, drug delivery systems, and tissue 

engineering, where robust antimicrobial performance is essential. Additionally, derivatization has been em-

ployed to improve the antioxidant capacity of chitosan [39, 40]. The introduction of phenolic groups, for ex-

ample, has been reported to boost both antioxidant and antitumor activities [41], opening new prospects for 

their use in cosmetics and food preservation [39, 42]. 

Another major objective of chitosan derivatization is to improve its drug delivery potential. Under acid-

ic conditions (pH < 6.5), protonated chitosan enhances the paracellular transport of peptide drugs across mu-

cosal epithelia. However, at neutral pH levels — such as those in the intestinal tract — native chitosan loses 

this absorption-enhancing ability. To overcome this limitation, a variety of chitosan derivatives have been 

developed and evaluated for performance in such physiological conditions [43, 44]. Moreover, the derivati-

zation of chitosan can introduce stimuli-responsive properties, including pH and temperature sensitivity. 

These features are especially useful in designing smart drug delivery systems that release therapeutics in re-

sponse to specific physiological conditions [45–47]. Chitosan is also chemically modified to enhance its bio-

compatibility and reduce its immunogenicity, making it more suitable for biomedical applications such as 

tissue scaffolds [30]. Overall, chitosan derivatization significantly expands the polymer’s functional versatili-

ty and performance across medicine, biotechnology, and environmental science. Figure 1 illustrates the cor-

relation between types of derivatization and the resulting improvements in physicochemical or biological 

parameters. 

 

 

Figure 1. Influence of chitosan derivatization on its properties 

Among the carboxyalkyl derivatives carboxyethyl chitosan (CEC) has attracted increasing attention due 

to its improved characteristics, including enhanced biocompatibility and water solubility [48, 49]. Recent 

studies have further confirmed the antioxidant and antimutagenic activities of N-(2-carboxyethyl)chitosan 

(N-CEC) [50], along with its improved antibacterial properties [51]. Additionally, CEC-based fibers have 

shown great potential as scaffolds for tissue engineering, demonstrating no cytotoxicity toward L929 fibro-

blast cells [52]. CEC is synthesized through the carboxyethylation of chitosan, in which the hydroxyl and 

amino groups of chitosan are substituted with carboxyethyl moieties. Based on the substitution sites of the 

2-carboxyethyl group, CECs are generally classified into three types: O-CEC, N-CEC, and N,O-CEC [53]. 

Carboxyalkylation is typically carried out under either heterogeneous or homogeneous conditions through 
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nucleophilic substitution, addition, and addition-elimination reactions, often followed by reduction. In these 

reactions, chitosan serves as a nucleophilic polymer substrate [54, 55]. Figure 2 illustrates the synthetic 

pathways of carboxyethyl chitosan derivatives. 

 

 

Figure 2. Synthetic routes of carboxyethyl chitosan 

Herein, we investigated how gel-phase synthesis of N-CEC, as previously described in [56], influences 

the biopolymer properties and their relationship with structural features. This approach represents a highly 

efficient, cost-effective, and environmentally friendly process due to the minimal use of water and the com-

plete absence of organic solvents. Previous studies have demonstrated that temperature and reaction time are 

the key factors affecting the degree of substitution (DS) of N-CEC [56]. In the present work, we focused on 

evaluating how variations in DS influence both the yield of N-CEC and its behavior in aqueous environ-

ments, particularly in terms of porosity and pH-dependent swelling. 

2. Experimental 

Chitosan (degree of deacetylation: 85.5 %) was purchased from Orisone Chemicals Limited (China) 

and used for the gel-phase synthesis of N-CEC without further purification. Acrylic acid (type P) was sup-

plied by SIBUR LLC and was distilled prior to use. The resulting purity of acrylic acid was determined to be 

99.4 % by titration. 

2.1. Gel-phase synthesis of N-CEC 

The synthesis of N-CEC was carried out following the previously reported procedure [56], with modifi-

cations to several experimental conditions. Briefly, 1.8 mol of acrylic acid was dissolved in 160 mL of dis-

tilled water under stirring using a Scilogex OS20-S Overhead LED Digital Stirrer. Subsequently, 0.9 mol of 

chitosan was gradually added to the solution to prevent aggregation. After complete dissolution of chitosan, 

the reaction mixture was stirred for an additional 60 minutes, then transferred to a Kitfort KT-1910 Profes-

sional Series oven and incubated under various conditions to complete the carboxyethylation process. The 

specific parameters used for carboxyethylation are summarized in Table 1. 

T a b l e  1  

Sample codes 

Time, h 
Temperature, оС and code 

50 60 70 

24 N-CEC 1 N-CEC 2 N-CEC 3 

48 N-CEC 4 N-CEC 5 N-CEC 6 

72 N-CEC 7 N-CEC 8 N-CEC 9 

 

After drying, the N-CEC samples were ground into particles approximately 6 mm in size and washed 

with distilled water until acrylic acid content remained constant at the level of 0.1–0.2 %. The washed 
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N-CEC was then dried further until the moisture content reached 1-2 %, as measured using a PMB Weighing 

Moisture Analyzer (Adam Equipment Company, UK). The process yield was calculated according to Equa-

tion (1): 

 *100 %
exp

calc

m

m
 = , 

where mexp is the mass of the product obtained experimentally, g; mcalc is the theoretically calculated mass of 

the product, g. 

2.2. Polymer characterization 

2.2.1. Fourier-transform infrared spectroscopy 

The Fourier-transform infrared (FT-IR) spectroscopy was carried out in triplicate using a Spectrum One 

spectrometer (PerkinElmer, USA). 

2.2.2. Degree of substitution 

The degree of substitution (DS) of N-carboxyethylchitosan was determined using a C, H, N, S automat-

ed analyzer (PE 2400, Perkin Elmer, US). The resulting DS was calculated according to Equation (2): 

 

C C
product chitosan

N N

3

n n

n n
DS

    
−    

    
= , 

where nC/nN is the atomic ratio of elements in the product and in the initial chitosan, respectively. 

2.3. Functional properties evaluation 

2.3.1. Swelling studies 

The swelling capacity of the samples was measured using a widely accepted gravimetric method, as 

previously described [57]. Aqueous buffer solutions of varying pH were used as swelling media, including: 

phosphate buffer solution pH = 3.0, buffered copper sulfate solution pH = 4.0, acetate buffer solution 

pH = 6.0, phosphate buffer solution pH = 7.0, buffer (phosphate) solution pH = 9.0 and borate buffer solu-

tion pH = 10. Prior to testing, the hydrogels were dried to constant weight; the initial dry mass was designat-

ed as Wd. The sample was then immersed in 10 mL of distilled water at a temperature of 25 °C. After a speci-

fied time, the sample was removed, the excess water on the surface was blotted with tissue paper, and the 

weight (Ww) was recorded. The swelling percentage (S) was then calculated according to Equation (3): 

 ( )% *100w d

d

W W
S

W

−
= . 

2.3.2. Porosity 

The pore volume was determined using the liquid displacement method described in [8]. Ethanol was 

used as the displacement fluid due to its ability to infiltrate the samples without inducing swelling or struc-

tural damage. In summary, the dry sample (initial weight designated as Wd) was immersed in ethanol under 

vacuum for 30 minutes, and the weight of the sample in ethanol was recorded as Wl. The sample was then 

removed, and the surface liquid was blotted with filter paper. The weight of the wetted sample was recorded 

as Ww. The porosity was calculated according to Equation (4): 

 ( )
( )1

( )
% *100 %w d

w

W W

W W

−
 =

−
. 

Pore size analysis was carried out using scanning electron microscopy (SEM) with an EVO 50 micro-

scope (Zeiss, Germany). For sample preparation, the N-CEC specimens were sputter-coated with a 20 nm 

layer of copper using a JEOL JFC-1600 sputter coater (Japan) under a pressure not exceeding 8 Pa for 

40 seconds. 

2.4. Statistics 

Data of yield, porosity and swelling are presented as mean ± standard deviation. The data are visualized 

using histograms and a scatter plot. Statistical analysis was performed using Past 4.15 statistical soft-

ware [58]. For data not following a normal distribution, nonparametric statistical methods, including 



Gel Phase Synthesis and pH-Sensitive Swelling-Structure Relationships … 

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 23 

PERMANOVA, were applied. Comparison between three groups of non-normally distributed samples was 

performed using the Kruskal-Wallis test. 

3. Results and Discussion 

Each chitosan carboxyalkylation reaction mechanism strongly depends on reaction conditions, such as 

pH, temperature, and interaction time. Among these, pH has been shown to be the most critical factor for 

achieving total conversion. Typically, the reaction is carried out under acidic conditions, as the total reactivi-

ty of acrylic acid with the ammonium salt of chitosan exceeds that of acrylate with the free amino groups of 

chitosan. For instance, a pH of approximately 4.5 promotes the formation of O-carboxymethyl chitosan 

through a pathway favorable for imine formation; however, lower pH values require higher temperatures — 

specifically, temperatures sufficient for gel formation [59]. However, under low alkaline conditions (pH = 8), 

the reaction shifts towards the formation of N-substituted derivatives [60]. The pH parameter is particularly 

important and more easily controlled when the synthesis is conducted in the liquid phase. However, due to 

the large volumes of water required for liquid-phase reactions, we opted for the gel-phase synthesis of 

N-CEC, as previously described in [56]. This method has been reported as a green and efficient approach, 

with temperature and reaction time identified as the key parameters influencing the quality of the resulting 

N-CEC. Temperature is a limiting factor for the reaction rate in carboxyethyl chitosan synthesis. It plays a 

crucial role, with effective reaction temperatures reported at 50 °C [61–64], 60 °C [65–68], and up to 

90 °C [56]. The effect of reaction time on the carboxyethylation process remains a matter of debate. Earlier 

studies showed that extending the reaction duration from 48 h to 240 h increases the DS but significantly 

reduces the yield by approximately twofold [69]. Other results indicated that 40 h is sufficient to complete 

the reaction, with only a marginal increase in DS observed beyond this point [70]. To date, it is widely ac-

cepted that 48 h represents the optimal reaction time for carboxyethylation of chitosan [71]. In our study, 

N-CEC samples were synthesized via gel-phase reaction between chitosan and acrylic acid in water under 

heating. The reaction yield was calculated according to Equation (1), and the obtained results are presented 

in Figure 3. 

 

 

Figure 3. N-CEC yield depending on temperature and reaction time. *p<0.05 Kruskal-Wallis test 

A significant effect of both temperature and reaction time on N-CEC yield was observed (two-way 

PERMANOVA, F(2, 26) = 866,590, p < 0.01 for temperature; F(2, 26) = 128,440, p < 0.01 for reaction 

time). As shown in Figure 3, the yield reaches nearly 100 % at 70 °C after both 48 and 72 hours, with no sta-

tistically significant difference between these time points. Nevertheless, we hypothesized that the quality of 

the resulting N-CEC polymers may also depend on reaction conditions, potentially affecting the structural 

and functional properties of the final product. For all synthesized samples (coded NCEC-1 to NCEC-9), the 

FT-IR and SEM analyses yielded consistent results, confirming the successful modification of chitosan. 

3.1. Fourier-Transform Infrared Spectroscopy 

The FT-IR spectra of chitosan and N-CEC are presented in Figure 4. In the spectrum of N-CEC, absorp-

tion bands are observed at 2927, 1775, 1734, 1658, 1561, and 1419 cm⁻1, which are indicative of successful 

functionalization of chitosan with 2-carboxyethyl groups. 
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Figure 4. FT-IR spectra of Chitosan and N-CEC 

3.2. Degree of substitution 

Polysaccharides modification has a high impact on their physicochemical properties, improving solubil-

ity, ion-exchange capacity and adsorption [72]. In particular, the introduction of acidic groups into chitosan 

increases its anionic properties, enabling variable charge density along the biopolymer chain, which in turn 

leads to pH-dependent behavior [36]. This broadens the diversity of available raw materials and allows for 

the customization of biopolymer properties according to specific application requirements. Therefore, it is 

essential to characterize the degree of derivatization, and various analytical approaches have been reported 

for this purpose including nuclear magnetic resonance [60], elemental analysis [73], ultraviolet-visible and 

Fourier-transform infrared spectra [74]. In the present study, we investigated the degree of substitution (DS), 

which reflects the average number of 2-carboxyethyl groups per repeating unit (Table 2). 

T a b l e  2  

Elemental analysis results 

Sample 
Element content, % Degree of 

substitution С Н N 

N-CEC 1 40.30 6.75 5.04 0.96 

N-CEC 2 39.21 6.81 4.70 1.10 

N-CEC 3 40.39 6.76 4.99 1.00 

N-CEC 4 42.21 6.73 4.74 1.12 

N-CEC 5 42.03 6.84 5.06 1.08 

N-CEC 6 39.87 6.66 4.82 1.07 

N-CEC 7 40.52 6.75 4.66 1.23 

N-CEC 8 42.56 6.63 5.00 1.16 

N-CEC 9 42.22 6.86 4.73 1.32 
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The data presented in Table 2 indicate a clear correlation between the DS and the reaction conditions. 

The DS ranges from 0.96 to 1.10 at 50 °C, from 1.07 to 1.12 at 60 °C and from 1.16 to 1.32 at 70 °C. These 

values are in agreement with previously reported data, with only minor deviations [56], and confirm the re-

producibility of the synthesis, which is critical for future process development. 

3.3. Porosity 

Modifying porosity allows the improvement of mechanical stability and structure of biopolymers. The 

distribution of void space within the compositions can be effectively controlled by adjusting the degree of 

cross-linking, which in turn correlates with the degree of substitution of the starting polymer [75]. An in-

crease in pore size enhances the pH-sensitive properties of chitosan hydrogels [64]. One of the most relevant 

examples is swelling, a critical factor for hydrogel performance in drug delivery applications [76]. Addition-

ally, high porosity provides a large surface area for drug loading, while the presence of interconnected pores 

allows for controlled release of therapeutic agents [77]. In tissue engineering, pores and channels formed 

within the hydrogel matrix facilitate cell migration and proliferation into damaged tissue, ultimately support-

ing the regeneration or replacement of malfunctioning organs [78]. Proper porosity also contributes to opti-

mal mechanical strength, elasticity, and structural stability of chitosan-based hydrogels [79]. The porosity 

characteristics of carboxyethylchitosan biopolymers synthesized in the present study are presented in Fig-

ure 5. 

 

 

Figure 5. Porosity of N-CEC dependence on the reaction conditions. *p < 0.05 Kruskal-Wallis test 

Based on the results presented in Figure 5, a significant effect of both temperature and reaction time on 

the porosity of N-CEC was observed (two-way PERMANOVA, F(2, 26) = 2,162, p < 0.01 for temperature; 

F(2, 26) = 227,360, p < 0.01 for reaction time). The data indicate that reaction temperature exerts a stronger 

influence on N-CEC porosity than reaction time. Samples synthesized at 70 °C exhibited porosity values ex-

ceeding 15 %, whereas those prepared at lower temperatures showed porosity in the range of 4–10 %, with 

no clear correlation to reaction time. This effect is likely attributed to a higher DS at elevated temperatures, 

which results in the incorporation of a greater number of –COOH groups into the biopolymer structure. The 

increased presence of carboxylic groups enhances the potential for interchain cross-linking, thereby contrib-

uting to the formation of a more porous network (Figure 6) [80]. 

 

 

Figure 6. Cross-linking of N-CEC polymer chains occurring within the synthesis 
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Therefore, mild reaction conditions may lead to the formation of a slightly cross-linked polymer net-

work; however, this assumption requires further comprehensive investigation. 

Regarding pore size, N-CEC hydrogels were analyzed in both dried and swollen states. The results, pre-

sented in Figures 7a and 7b, respectively, demonstrate that the N-CEC hydrogel exhibits a layered internal 

structure with distinct porosity, with pore sizes ranging from 50 to 200 µm. 

 

  
a 

  

b 

Figure 7. Representative SEM pictures of N-CEC in dried (a) and swollen (b) states 

3.4. pH-Sensitive swelling 

Swelling behavior is a key characteristic of biopolymers and is influenced not only by their internal 

structure, but also by external factors such as the pH and ionic strength of the surrounding medium. Previous 

studies have shown that carboxymethylchitosan (CMC) exhibits good ionic and pH sensitivity in aqueous 

solution, which has been attributed to the presence of amino groups in its side chains [81]. In addition, tem-

perature-sensitive swelling of CMC-based hydrogels has been reported, with an increase in swelling ob-

served within the temperature range of 5–55 °C. This effect has been explained by the formation of addition-

al hydrogen bonds and cross-links at lower temperatures, leading to more rigid and robust structures that are 

less permeable to water [82]. Overall, swelling is a highly responsive parameter, and understanding its un-

derlying mechanisms is essential for predicting the performance of biopolymers and their compositions. The 

experimental data on the pH-sensitive swelling of N-CEC biopolymers synthesized under various reaction 

conditions are presented in Figure 8. 

 



Gel Phase Synthesis and pH-Sensitive Swelling-Structure Relationships … 

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 27 

 

a 

 

b 

 

c 

Figure 8. Swelling of N-CEC biopolymers under various pH for the samples synthesized  

at the temperature of 50 °C, 60 °C and 70 °C, within a). 24 h, b). 48 h, c). 72 h. *p<0.05 Kruskal-Wallis test 

Figure 8 demonstrates that the swelling behavior of N-CEC is strongly dependent on the pH of solution. 

According to two-way PERMANOVA analysis: at 24 hours, F(2, 53) = 827,360 p < 0.01 and  

F(5, 53) = 835,110 p < 0.01, accordingly; at 48 hours, F(2, 53) = 171,6100 p < 0.01 and F(5, 53) = 1,049,000 

p < 0.01; at 72 hours, F(2, 53) = 521,560 p < 0.01 and F(5, 53) = 1,024,200 p < 0.01). All N-CEC samples 

exhibited limited swelling under acidic conditions, while a notable 2–3-fold increase was observed starting 

from pH 7, with maximum swelling reaching 450 % for biopolymers synthesized at 70 °C for 72 hours. To 

better interpret these results, the effects of cross-linking and pH should be considered. Cross-linking is 

known to significantly influence both swelling behavior and other properties of hydrogels by affecting the 

molecular weight [83]. In some systems, a lower degree of cross-linking provides greater network flexibility 

and increased hydrodynamic free volume, allowing the polymer chains to retain more solvent, which leads to 

increased swelling [84]. However, in our case, the high porosity of the samples synthesized at 70 °C suggests 

a higher degree of cross-linking, which would typically limit swelling. This apparent contradiction indicates 

that pH plays a more dominant role in swelling than cross-linking density under these conditions. Similar 

observations were reported in [85], where enhanced swelling was attributed to the deprotonation of carbox-

ylic acid (–COOH) groups to carboxylate (–COO–) anions, resulting in electrostatic repulsion between poly-
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mer chains. This is consistent with the nature of the gel-phase synthesis, in which amino groups of chitosan 

are partially substituted by carboxyethyl groups. Interestingly, the unexpectedly high swelling observed for 

samples synthesized at 50 °C for 24 hours can be explained by a lower DS. This results in a larger number of 

free amino groups, which are protonated at low pH, allowing the hydrogel to swell. As pH increases, depro-

tonation of amino groups occurs, reducing repulsion between chains and leading to partial shrinking of the 

network [86, 87]. In summary, a higher degree of substitution in N-CEC synthesized at 70 °C ensures a com-

bination of enhanced porosity and swelling, compared to mild synthetic conditions. 

Conclusions 

The present study demonstrates the successful synthesis of N-carboxyethylchitosan via an eco-friendly 

Michael addition protocol, with systematically varied reaction conditions ranging from 24 h to 72 h and from 

50 °C to 70 °C. The resulting yield was strongly dependent on both time and temperature, increasing from 

20 % at 50 °C (24 h) and to 98 % under optimized conditions. Structural studies of biopolymer samples were 

performed using FT-IR, SEM, and elemental analysis, which revealed a direct correlation between reaction 

temperature and the degree of substitution. Notably, higher synthesis temperatures produced samples with 

improved porosity (up to 15 %) and a uniform pore size distribution of 50–200 µm. The swelling behavior of 

N-CEC was found to be highly pH-sensitive. Under acidic conditions, swelling was limited to 100–150 %, 

whereas under alkaline conditions it increased 2–3-fold, reaching a maximum of 450 % for the sample syn-

thesized at 70 °C for 72 hours. This phenomenon is likely attributable to the deprotonation of –COOH 

groups to –COO⁻ anions, resulting in electrostatic repulsion between polymer chains. These findings high-

light the potential of controllable N-CEC synthesis to achieve tunable structural and functional properties, 

reinforcing its applicability in the design of advanced pH-responsive biomaterials. 
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