SUPPLEMENTARY MATERIALS

Mn(II) and Zn(II) Complexes of a Coumarin Derivative: Synthesis, Characterization and Biological Potential

Zulfiqar Ali Shahid[®], Rukhsana Tabassum[®]*

Institute of Chemistry, Islamia University of Bahawalpur, Bahawalpur, Pakistan (*Corresponding author's e-mail: rukhsana.tabassum@iub.edu.pk)

List of Content

Table S1 DPPH scavenging activity of ZL compounds (ZL11-ZL16)	S3
Table S2 DPPH scavenging activity of ZL Mn complexes (ZL11Mn-ZL16Mn)	S3
Table S3 DPPH scavenging activity of ZL Zn complexes (ZL11Zn-ZL16Zn)	S4
Table S4 NO scavenging activity of (ZL11-ZL16)	S4
Table S5 NO scavenging activity of ZL Mn complexes (ZL11Mn-ZL16Mn)	S5
Table S6 NO scavenging activity of ZL Zn complexes (ZL11Zn-ZL16Zn)	S5
Table S7 XRD results of ZL16	S6
Table S8 XRD results of ZL16Mn	S6
Table S9 XRD results of ZL16Zn Table S10 Thermo analytical results (TG and DTG) of ligand (ZL14) and Metal complex	S6 S6
Figure S1. FTIR spectrum of ZL11	S7
	S7
Figure S2. FTIR spectrum of ZL11 Mn	
Figure S3. FTIR spectrum of ZL11 Zn	S8
Figure S4. FTIR spectrum of ZL12	S8
Figure S5. FTIR spectrum of ZL12Mn	S9
Figure S6. FTIR spectrum of ZL12Zn	S9
Figure S7. FTIR spectrum of ZL13	S10
Figure S8. FTIR spectrum of ZL13Mn	S10
Figure S9. FTIR spectrum of ZL13 Zn	S11
Figure S10. FTIR spectrum of ZL14	S11
Figure S11. FTIR spectrum of ZL14Mn	S12
Figure S12. FTIR spectrum of ZL14 Zn	S12
Figure S13. FTIR spectrum of ZL15	S13
Figure S14. FTIR spectrum of ZL15Mn	S13
Figure S15. FTIR spectrum of ZL15 Zn	S14
Figure S16. FTIR spectrum of ZL16	S14
Figure S17. FTIR spectrum of ZL16Mn	S15
Figure S18. FTIR spectrum of ZL16 Zn	S15
Figure S19. ¹ HNMR spectrum of ZL11	S16
Figure S20. ¹ HNMR spectrum of ZL12	S16
Figure S21. ¹ HNMR spectrum of ZL13	S17
Figure S22. ¹ HNMR spectrum of ZL14	S17
Figure S23. ¹ HNMR spectrum of ZL15	S18
Figure S24. ¹ HNMR spectrum of ZL16	S18
Figure S25. ¹³ CNMR spectrum of ZL11	S19

S19
S20
S20
S21
S21
S22
S22
S23
S23
S24
S24
S25
S25
S26
S26
S27
S27

Table S1 DPPH scavenging activity of ZL compounds (ZL11-ZL16)

	%Scave	%Scavenging of DPPH at different concentrations(μg/mL)							
Compounds	5	10	15	20	25	IC ₅₀ (μg/mL)			
ZL11	53.90	60.3	64.90	70.58	77.05	7.62±0.04			
ZL12	46.27	54.11	60.98	70.00	76.07	6.93±0.05			
ZL13	44.70	52.54	59.41	67.45	78.43	7.6±0.04			
ZL14	40.78	55.09	63.13	70.19	80.39	7.78±0.03			
ZL15	47.6	52.94	57.6	62.3	69.6	6.94±0.06			
ZL16	47.45	54.31	60.19	65.88	70.19	6.57±0.03			
AA*	46.47	52.09	61.52	73.47	77.18	7.066±0.06			

^{*%}age scavenging= $((A_0-As/A_0)\times 100$ where A_0 =Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of DPPH calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S2 DPPH scavenging activity of ZL Mn complexes (ZL11Mn-ZL16Mn)

	%Scaver					
Compounds	5	10	15	20	25	IC ₅₀ (μg/mL)
ZL11 Mn	48.78	53.41	58.53	65.38	70.97	6.45±0.07
ZL12 Mn	44.14	48.53	52.92	58.29	65.12	11.84±0.01
ZL13 Mn	50.9	55.85	60.73	67.07	71.46	7.09±0.01
ZL14 Mn	42.19	49.02	53.90	59.75	63.65	11.04±0.01
ZL15 Mn	40.24	45.60	50.73	57.00	63.41	11.84±0.04
ZL16 Mn	50.00	56.82	63.90	70.48	75.60	6.629±0.02
AA*	46.47	52.09	61.52	73.47	77.18	7.066±0.06

^{*%}age scavenging=((A₀-As/A₀)×100 where A₀=Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of DPPH calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S3 DPPH scavenging activity of ZL Zn complexes (ZL11Zn-ZL16Zn)

	%Scaver					
Compounds	5	10	15	20	25	IC ₅₀ (µg/mL)
ZL11 Zn	44.20	49.64	56.73	62.88	70.68	8.31±0.051
ZL12 Zn	48.46	55.55	63.59	68.08	74.46	6.10±0.048
ZL13 Zn	43.49	50.35	56.97	63.59	69.50	8.49±0.046
ZL14 Zn	39.24	47.75	54.60	62.88	72.10	5.65±0.08
ZL15 Zn	43.02	47.99	56.50	63.82	75.41	8.32±0.06
ZL16 Zn	47.28	52.24	57.91	65.48	73.52	7.14±0.075
AA*	46.47	52.09	61.52	73.47	77.18	7.066±0.06

^{*%}age scavenging= $((A_0-As/A_0)\times 100$ where A_0 =Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of DPPH calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S4 NO scavenging activity of (ZL11-ZL16)

	%Scaven					
Compounds	5	10	15	20	25	IC ₅₀ (μg/mL)
ZL11	47.39	55.72	67.70	75.52	89.06	6.46±0.046
ZL12	48.43	56.25	66.14	83.85	92.18	6.38±0.095
ZL13	47.91	59.37	68.27	73.95	81.25	5.89±0.038
ZL14	45.31	54.16	64.58	74.47	85.93	7.015±0.068
ZL15	44.79	59.37	71.87	82.81	92.18	6.47±0.052
ZL16	41.28	45.69	51.21	57.61	65.34	11.2±0.053
AA*	48.79	56.83	60,21	66.21	70.50	6.79±0.026

^{*%}age scavenging= $((A_0-As/A_0)\times 100$ where A_0 =Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of NO calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S5 NO scavenging activity of ZL Mn complexes (ZL11Mn-ZL16Mn)

Common do	%Scavengir	IC50				
Compounds	5	10	15	20	25	(μg/mL)
ZL11 Mn	51.17	58.63	64.39	70.78	77.61	7.29±0.021
ZL12 Mn	51.81	56.71	62.02	68.23	75.69	5.99±0.060
ZL13 Mn	57.56	64.17	64.81	75.22	82.30	6.56±0.07
ZL14 Mn	52.66	59.06	64.17	72.49	78.03	6.98±0.024
ZL15 Mn	58.84	65.24	71.21	78.03	82.67	6.35±0.096
ZL16 Mn	46.26	53.09	60.55	66.52	74.41	7.10±0.67
AA*	48.79	56.83	60,21	66.21	70.50	6.79±0.026

^{*%}age scavenging=((A₀-As/A₀)×100 where A₀=Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of NO calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S6 NO scavenging activity of ZL Zn complexes (ZL11Zn-ZL16Zn)

	%Scaver					
Compounds	5	10	15	20	25	IC ₅₀ (μg/mL)
ZL11 Zn	52.75	65.51	64.13	73.79	82.75	7.32±0.044
ZL12 Zn	40.00	50.65	59.65	68.31	80.34	6.77±0.078
ZL13 Zn	56.89	64.13	76.89	95.17	96.55	6.63±0.034
ZL14 Zn	49.65	56.20	68.96	83.10	92.41	6.073±0.09
ZL15 Zn	57.58	61.72	66.53	72.06	74.13	6.59±0.06
ZL16 Zn	38.37	44.56	51.48	59.48	68.01	6.3±0.065
AA*	48.79	56.83	60,21	66.21	70.50	6.79±0.026

^{*%}age scavenging= $((A_0-As/A_0)\times 100$ where A_0 =Absorbance of blank As=Absorbance of sample IC₅₀=Concentration of compounds for 50% inhibition of NO calculated by non-linear regression AA*=Ascorbic acid (saturated compound)

Table S7 XRD results of ZL16

2θ	θ	d-spacing	FWHM	L (nm)	Average crystal size
10.74636	5.37318	8.225984823	1.18314	6.982190712	
11.54993	5.774965	7.655415376	1.10716	7.532510562	
12.29678	6.14839	7.192087335	1.21595	6.863252946	4.092028
22.94915	11.474575	3.872156537	1.22748	6.897537714	
24.94915	12.474575	3.56609868	23.04805	0.368707523	

Table S8 XRD results of ZL16Mn

2θ	θ	d-spacing	FWHM	L (nm)	Average crystal size
17.27887	8.639435	5.127954552	1.74161	4.710136115	
26.69156	13.34578	3.337127729	1.84368	4.625347197	
31.54908	15.77454	2.83352031	2.04612	4.213871061	4.341198
34.75143	17.375715	2.579391656	1.69112	5.141034797	4.341190
38.69814	19.34907	2.324924593	1.55375	5.659906526	
55.70464	27.85232	1.648779008	1.55422	6.038090462	

Table S9 XRD results of ZL16Zn

2θ	θ	d-spacing	FWHM	L (nm)	Average crystal size
14.56013	7.280065	6.078780792	15.82403	0.520125408	
36.06904	18.03452	2.488129959	1.6689	5.22864124	
56.82144	28.41072	1.618995715	1.83956	5.128155248	1.573858
58.82144	29.41072	1.568625859	131.56428	0.072397477	
61.30325	30.651625	1.510935026	142.4885	0.067689174	

Table S10 Thermo analytical results (TG and DTG) of ligand (ZL14) and Metal complex

Compound	TG Range(°C)	DTG max Range(°C)	Estin Calcul Mass Lo	nated ated % oss Total ass	Assignment	Metallic Residue
(ZL14).H ₂ O	20-190 190-400 400-800	112, 305, 535, 595	3.17 20.39 11.18 14.69	(3.93) (20.61) (10.02) (14.42)	Loss of H ₂ O Loss of C ₄ H ₇ ClLoss of CO ₂ Loss of C ₃ H ₈	C ₄ H ₇ ClN ₂ O
Mn(ZL14).3H ₂ O	20-100 100-190 190-488 488-880	113, 168, 534, 581	2.11 2.51 1.31 12.87	(3.71) (3.91) (1.78) (12.72)	Loss of 2H ₂ O Loss of HCl Loss of CH ₄ Loss of C ₈ H ₁₆	C ₃₃ H ₆ ClN ₂ MnO
Zn (ZL14).3H ₂ O	31-101 101-400 550-600	165, 292, 373, 463	2.18 1.14 3.18 3.99	(3.68) (1.70) (4.76) (3.40)	Loss of 2H ₂ O Loss of CH ₄ Loss of CO ₂ Loss of C ₂ H ₆	C ₄₁ H ₈₁ Cl ₂ N ₂ ZnO

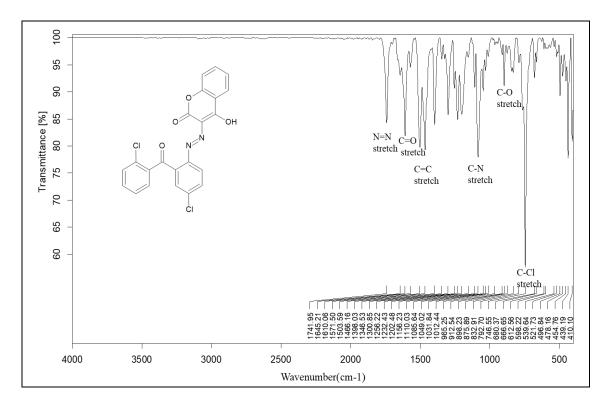


Figure S1. FTIR spectrum of ZL11

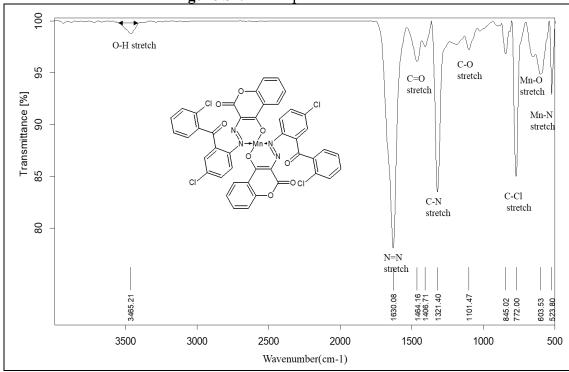


Figure S2. FTIR spectrum of ZL11 Mn

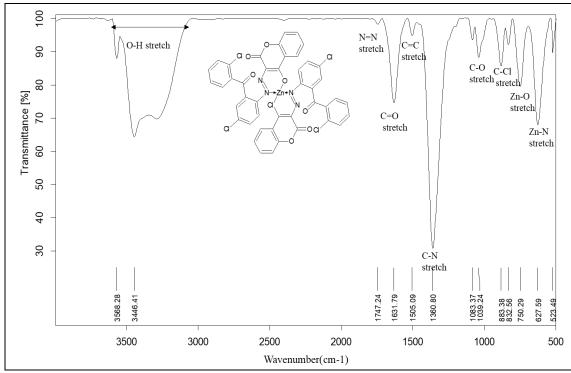


Figure S3. FTIR spectrum of ZL11 Zn



Figure S4. FTIR spectrum of ZL12

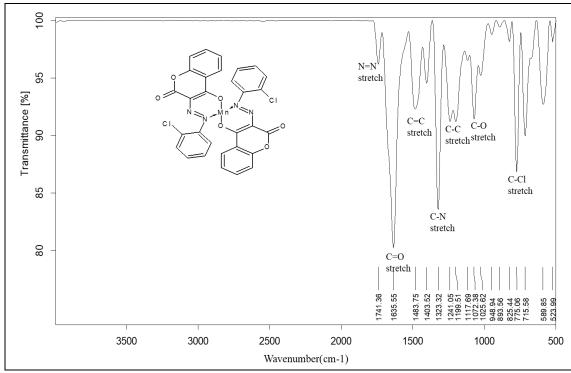


Figure S5. FTIR spectrum of ZL12Mn

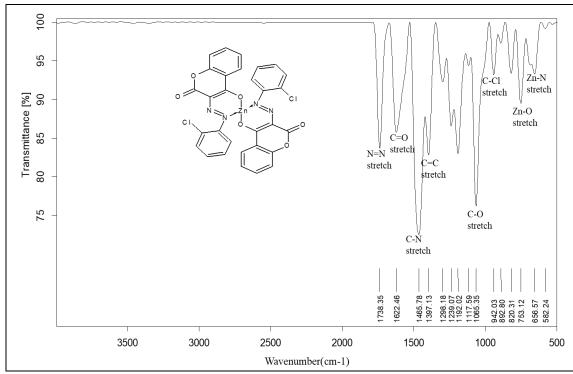


Figure S6. FTIR spectrum of ZL12Zn

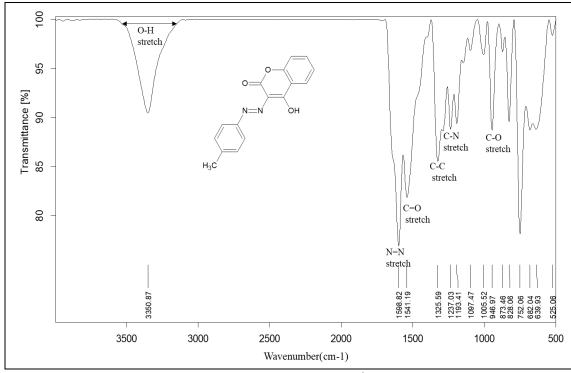


Figure S7. FTIR spectrum of ZL13

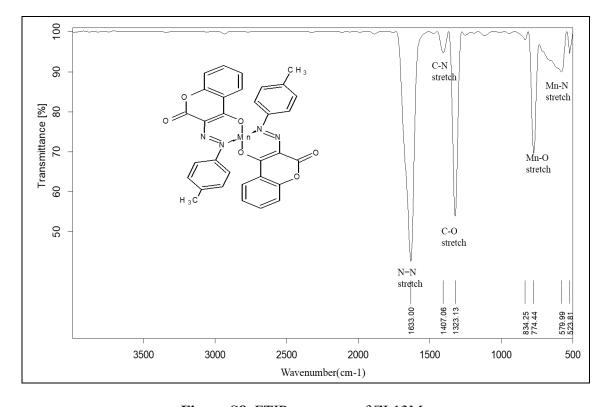


Figure S8. FTIR spectrum of ZL13Mn

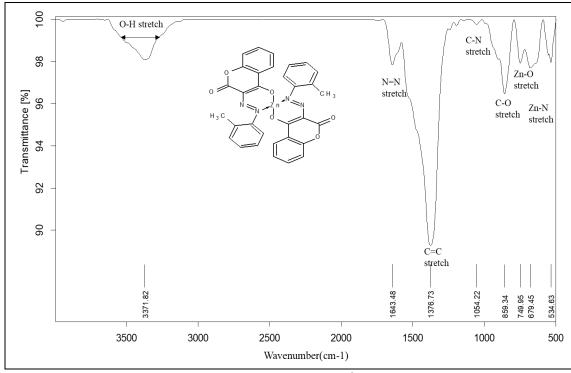


Figure S9. FTIR spectrum of ZL13 Zn 100 O-H stretch 86 Transmittance [%] 2 94 96 stretch stretch 92 C-O stretch 90 C-N stretch C-Cl stretch 3399.67 1739.63 1597.54 1218.00 3500 3000 2500 2000 1000 500 1500 Wavenumber(cm-1)

Figure S10. FTIR spectrum of ZL14

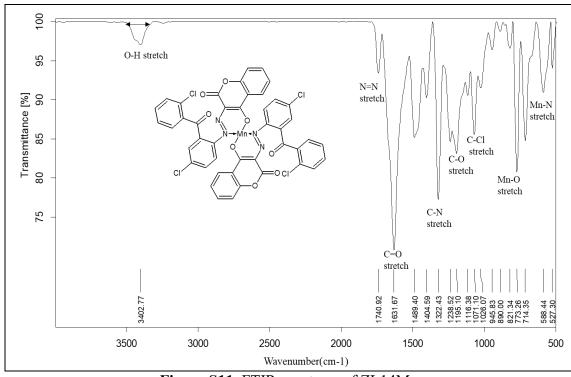


Figure S11. FTIR spectrum of ZL14Mn

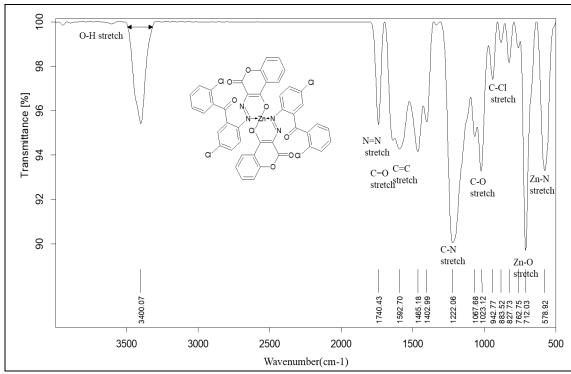


Figure S12. FTIR spectrum of ZL14 Zn

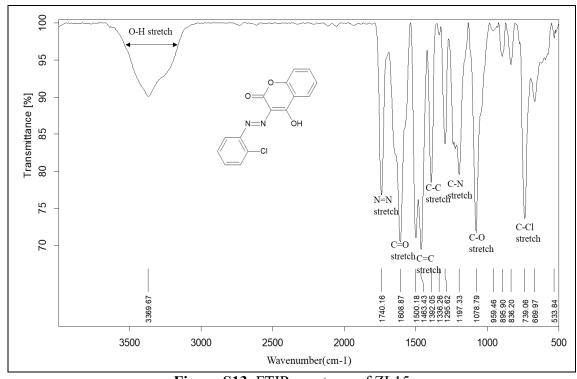


Figure S13. FTIR spectrum of ZL15 100 O-H stretch 92 N=N stretch Transmittance [%] 80 85 90 С-О C=C stretch stretch Mn-N stretch C-N stretch C-Cl Mn-O stretch stretch 75 C-C stretch 20 C=O stretch 1224.77 -1086.66 1025.78 3402.46 1741.80 1631.50 3500 3000 2500 2000 1500 1000 500 Wavenumber(cm-1)

Figure \$14. FTIR spectrum of ZL15Mn

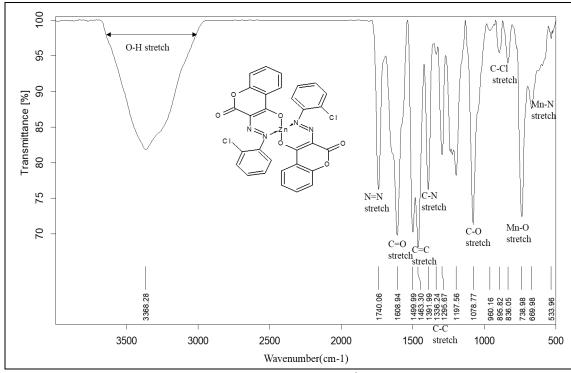


Figure S15. FTIR spectrum of ZL15 Zn 100 O-H stretch 98 Transmittance [%] 92 stretch stretch C-C stretch 90 C=O stretch 88 N=N stretch 1647.72 1600.11 1543.66 3500 3000 2500 2000 1000 1500 500 Wavenumber(cm-1)

Figure S16. FTIR spectrum of ZL16

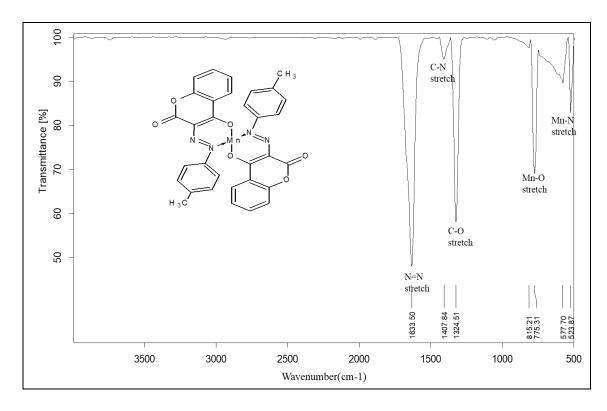


Figure S17. FTIR spectrum of ZL16Mn

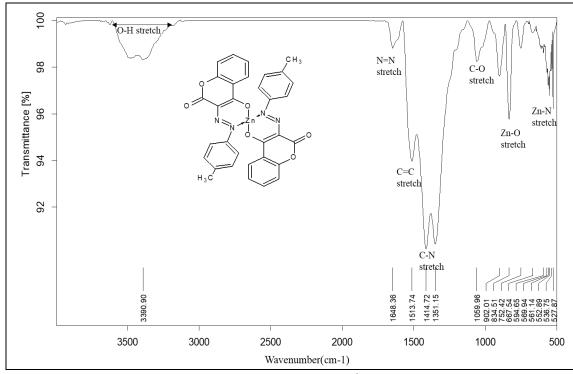


Figure S18. FTIR spectrum of ZL16 Zn

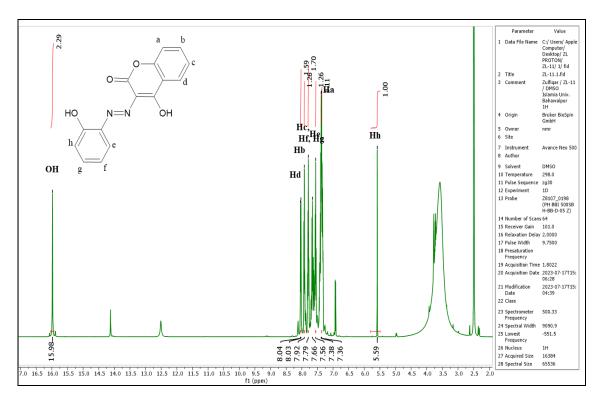


Figure S19. ¹HNMR spectrum of ZL11

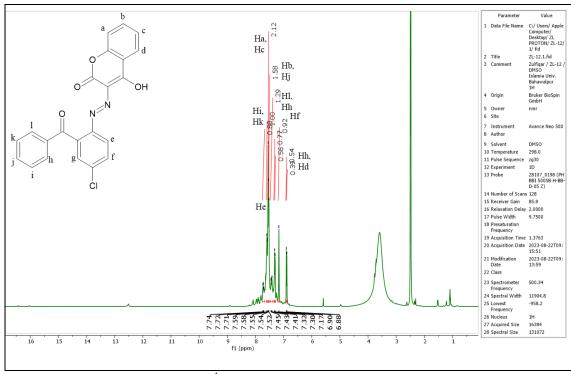


Figure S20. ¹HNMR spectrum of ZL12

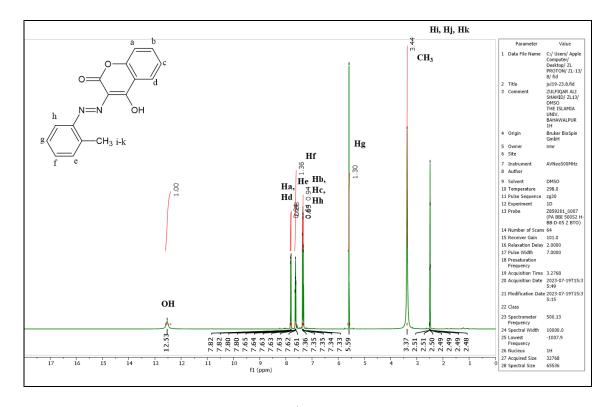


Figure S21. ¹HNMR spectrum of ZL13

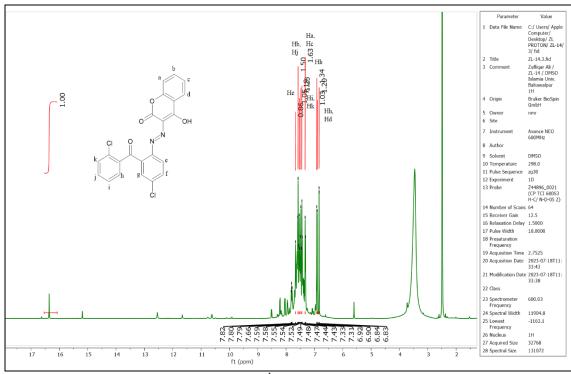
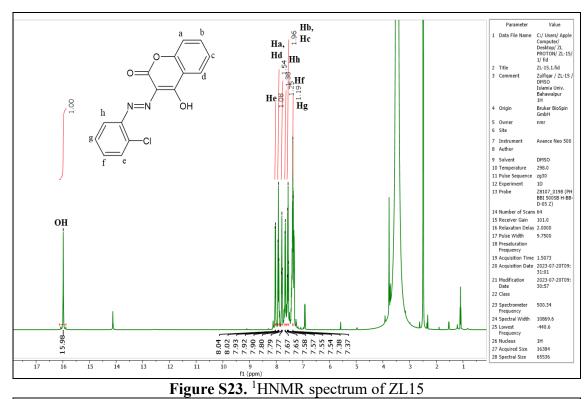



Figure S22. ¹HNMR spectrum of ZL14

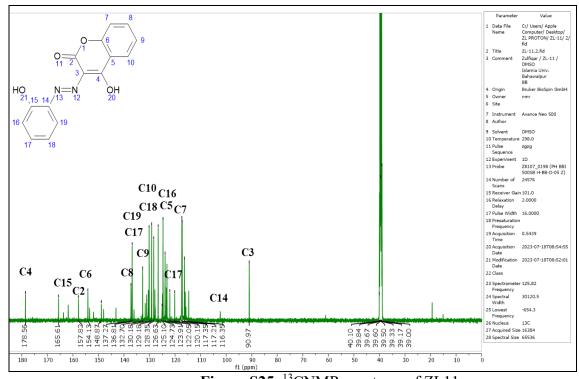



Figure S24. ¹HNMR spectrum of ZL16

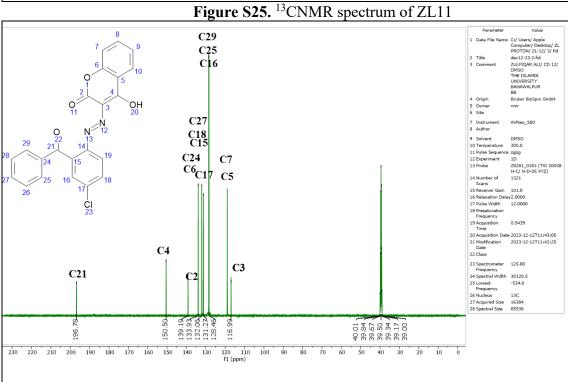
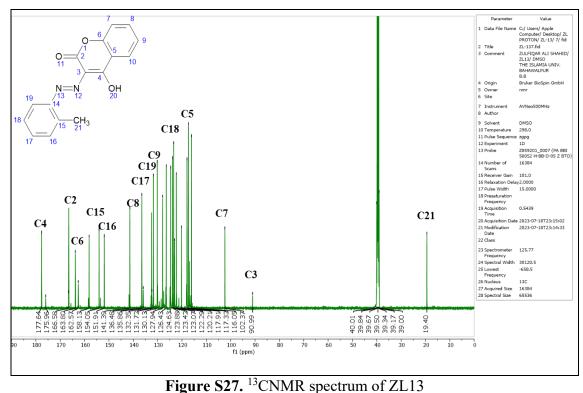



Figure S26. ¹³CNMR spectrum of ZL12

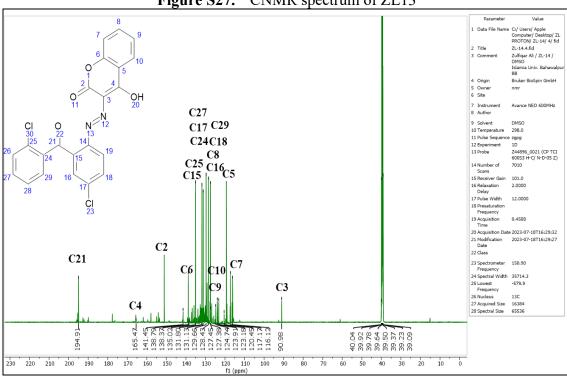
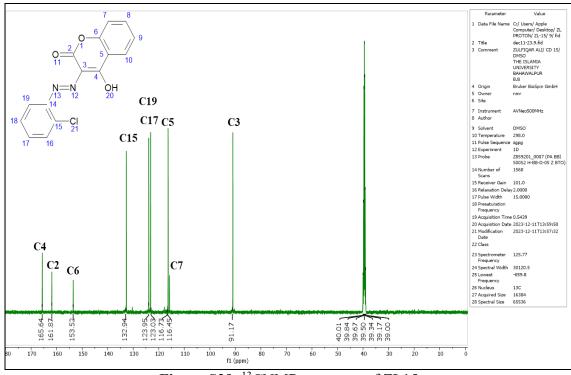



Figure S28. ¹³CNMR spectrum of ZL14

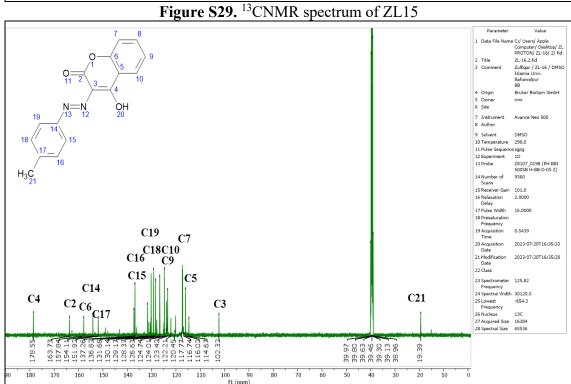


Figure S30. ¹³CNMR spectrum of ZL16

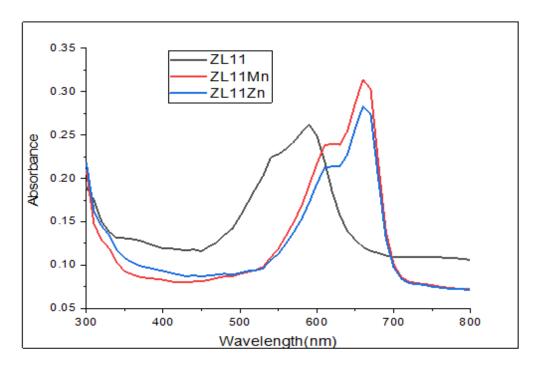


Figure S31. UV-VIS spectrum of ZL11, ZL11Mn, ZL11Zn

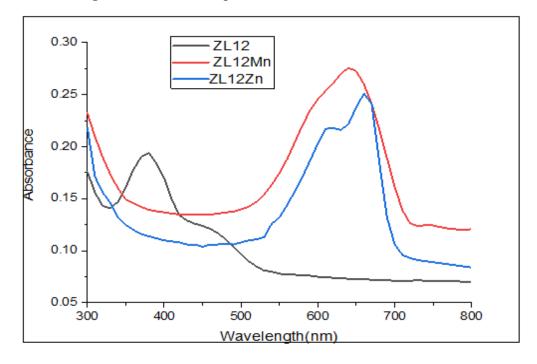


Figure S32. UV-VIS spectrum of ZL12, ZL12Mn, ZL12Zn

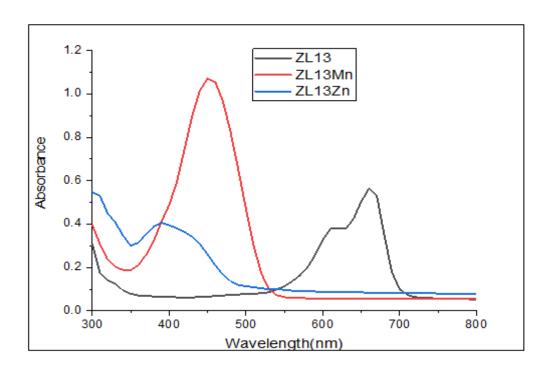


Figure.S33. UV-VIS spectrum of ZL13, ZL13Mn, ZL13Zn

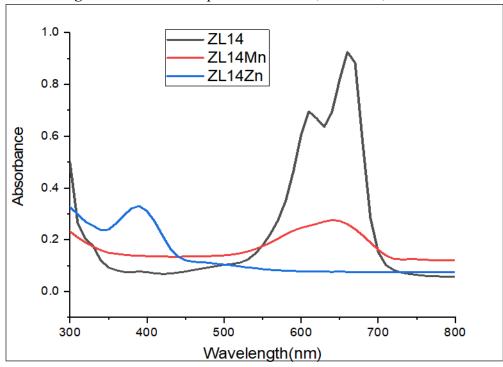


Figure S34. UV-VIS spectrum of ZL14, ZL14Mn, ZL14Zn

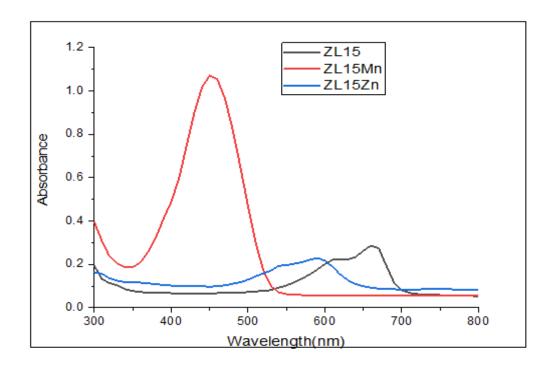


Figure S35. UV-VIS spectrum of ZL15, ZL15Mn, ZL15Zn

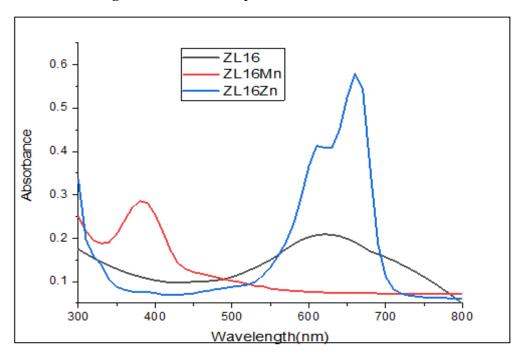
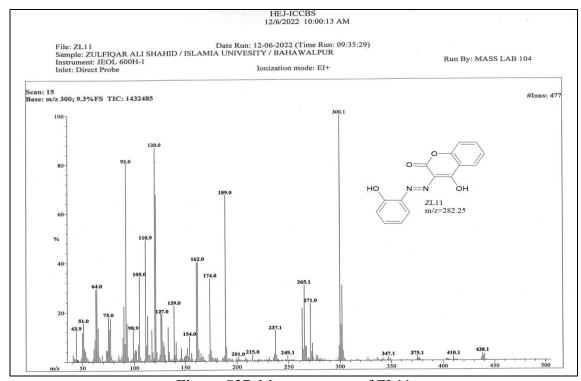



Figure S36. UV-VIS spectrum of ZL16, ZL16Mn, ZL16Zn

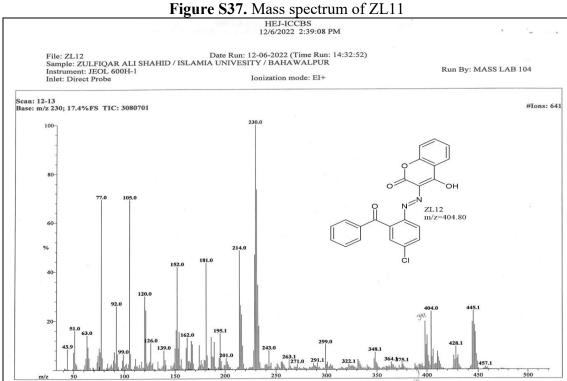


Figure S38. Mass spectrum of ZL12

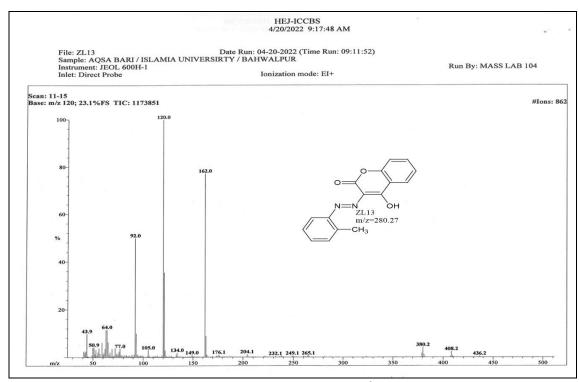
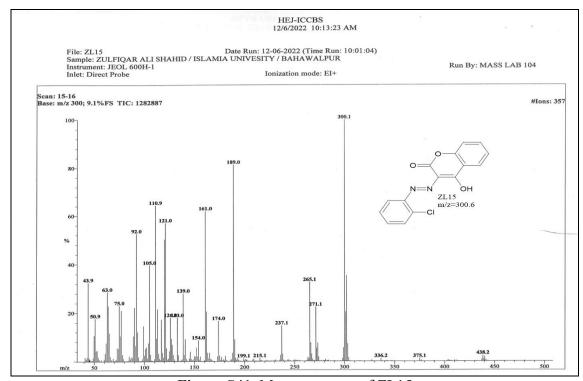



Figure.S40. Mass spectrum of ZL14

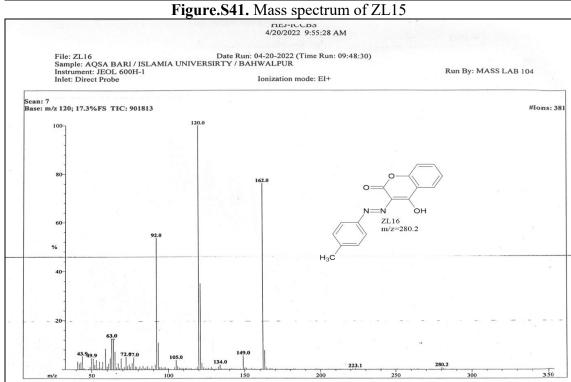


Figure.S42. Mass spectrum of ZL16