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Synthesis of Water-Soluble Polyethylene Glycol Fumarates  

for Biomedical Applications 

Polyethylene glycol fumarate (PEGF) with controlled structural composition has been obtained for further 

synthesis of double network cross-linked hydrogels for biomedical applications. The copolymer has been syn-

thesized by polycondensation reaction of fumaric acid and polyethylene glycol (PEG-600). Molecular weight 

of PEGF has been determined by gel permeation chromatography to be approximately 6000 Da with gel per-

meation chromatography. The polycondensation of fumaric acid and PEG-600 was studied throughout the re-

action process. The structure of the reaction product has been evidenced using FTIR- and 1H NMR-

spectroscopy. The quantitative ratios of the amount of –C=C– bonds and –COO groups to –C=O groups in 

the obtained PEGF have been estimated from IR-spectra for different synthesis time. The time-dependence of 

molar ratio of double bonds to methyl groups in PEGF has been obtained from corresponding 1H NMR-

spectra. FTIR and 1H NMR-spectroscopy, both, demonstrate that after the end of reaction the unsaturated  

–C=C– double bonds remain in the structure of the macromonomer, that is essential for further preparation of 

cross-linked hydrogels. The addition of the tightly cross-linked network of polyvinyl alcohol leads to for-

mation of highly tough biocompatible material for preparation of the artificial meniscus which can further be 

used as a solution in the treatment of diseases such as osteoarthritis. 

Keywords: polyethylene glycol, polyethylene glycol fumarate, fumaric acid, polyester resin, macromonomer, 

hydrogels, FTIR- spectroscopy, 1H NMR-spectroscopy. 

 

Introduction 

The creation of novel materials with sufficient mechanical properties for use in various areas of science 

and industry is of great importance. Due to their unique properties such materials have a wide range of appli-

cations starting from additives for building materials to use in medicine [1–16]. Varieties of copolymers have 

been studied to obtain the systems used in medicine for different purposes [17–29], e.g. in tissue engineering 

[18, 22, 27], metallic nanocomposites [25, 26], double network stimuli-responsive hydrogels [23, 30] and so 

on. Among other polymers the oligo-/polyethylene glycol fumarates are recommended and investigated as 

medical hydrogel systems for tissue regeneration and drug delivery purposes due to their best mechanical 

properties [13, 14, 24]. Besides, the cryogels based on oligo-/polyethylene glycol fumarates were effectively 

synthesized for the biomedical applications [27]. High elasticity and simplicity of the synthesis of polyeth-

ylene glycol fumarates make them an interesting and promising object for the development of hydrogels for 

the biomedical application. Biocompatible soft materials made of hydrogels with high toughness based on 

double polymer networks can be used for the replacement of the soft tissue with endoprosthesis which could 
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be a solution for the treatment of such severe disease as osteoarthritis [5–9]. Such gels consist of two com-

partments: the first should have rigid and highly cross-linked structure, while the other must be weakly-

crosslinked and possess elasticity [6] to be able to restore after huge deformations applied to a knee joint. In 

this regard, polyesters can serve as building blocks for the second elastic network. For instance, 

oligo/polyethylene glycol fumarates were suggested in the literature as promising polymers for hydrogels in 

medicine [10–12]. Thus, it could be used for the preparation of biocompatible hydrogels based on a of double 

crosslinked network. In this case, polyvinyl alcohol could be a material for the first rigid network [13–16]. 

The present article focuses on the synthesis of water-soluble polyethylene glycol fumarate (PEGF) of 

controlled structural composition and the investigation of the changes of the process parameters on the struc-

ture, composition and properties of the final product. 

Experimental 

Materials 

Polyethylene glycol with molecular weight of 600 Da (PEG-600) and fumaric acid were purchased 

from Sigma Aldrich. Milli-Q water was used in all the experiments. 

Synthesis of PEGF 

Polyester resin was synthesized by direct polycondensation reaction of PEG-600 with fumaric acid at a 

molar ratio of the monomers of 1:1 in three-necked round bottom flask equipped with magnetic stirrer, con-

denser with Dean-Stark nozzle, thermometer and vacuum outlet. The system was submerged into glycerin or 

silicone bath to provide uniform heating and was blown with nitrogen. The reaction flask was heated to 160–

170 °C for 4–8 hours and then under high vacuum (147.1 millimeters of mercury) for 10 minutes at the same 

temperature. The reaction was stopped when the calculated amount of water was collected. 

Obtained polymer was purified from low molecular substances by dialysis by submerging the dialysis 

membrane (MWCO 3500 Da (Sigma Aldrich)) into deionized water at room temperature and constant mix-

ing at 250 rpm for 3 days. The deionized water was changed every 6 hours. 

The samples were then dried in a vacuum oven at 80 
°
C for several days until the copolymer with con-

stant weight was obtained. 

Molar weight estimation 

Molar weights (number-average (Mn) and weight-average (Mw) molecular weights) of the oligo-

/polyesters obtained during the reaction after 4, 5, 6 and 8 hours of polycondensation have been determined 

by gel permeation chromatography (GPC) on a Malvern chromatograph equipped with a Viscotek 270 max 

dual detector (polystyrene was used as a standard; the standard deviation of the molecular weight was ±100-

120). The samples of PEGF were dissolved in water, filtered and analyzed by GPC. 

Bromatometry 

Bromatometry is an analytical method based on the determination of the amount of bromine released in-

to the medium as a result of the reaction with unsaturated double bonds [31]. For the analysis 1 g of the sam-

ple (PEGF) was dissolved in 10 ml of water or the organic solvent and left for 24 hours. Then the mixture of 

KBr and KBrO3 solution was then poured into the sample solution which had been preacidified with 0.1 N 

solution of HCl. In acidic medium the bromine molecules react with the unsaturated double bonds in the sys-

tem. So, the bromide-bromate mixture is then left for 4 hours in a dark place. The access of bromine is titrat-

ed with the 0.1 N solution of Na2S2O3 in the presence of indicator phenolphthalein using microburette. The 

sample containing PEGF was analyzed in parallel with the control sample. The bromine index corresponds to 

the amount of bromine which can be added to 100 g of the substance analyzed. 

FTIR- and 1H NMR-spectroscopy 

The structure of obtained copolymers has been confirmed by FTIR-spectroscopy on a device FSМ 

2201, using standard procedure by preparation of KBr tablets in the wavenumber range 4000–400 cm
-1

 with 

a resolution of 1 cm
-1

. 
1
H NMR-spectroscopy has been performed on a device Bruker AMX-400 spectrometer at 22 °C. For 

the analysis 0.01 g of dried sample was dissolved in deuterium oxide within 24 hours followed by exposure 

to US-homogenization at 200 W for 10 min. The peak of chemical shift of D2O (4.79 ppm) was used as a 

reference. The frequency range was 950-4100 Hz. This signal was taken as indicated in the references [32, 

33]. 
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Results and Discussion 

The synthesis of PEGF has been carried out by polycondensation reaction of PEG-600 and fumaric acid 

at the molar ratio of PEG 600 and fumaric acid of 1:1 according to the scheme: 

 

 

As was measured by GPC, after 8 h of reaction the macromonomer with molecular weight around 

6000 Da was formed (Fig. 1). 

 

 

Figure 1. Molecular mass of the final product of PEGF obtained after 8 hours of polycondensation 

In order to study the influence of the duration of reaction on the chemical structure of PEGF, the sam-

ples were removed from the reaction mixture after a certain time. The obtained purified products were ana-

lyzed by FTIR-spectroscopy for the presence of active double bonds necessary for the formation of double 

network hydrogels. Figure 2 shows the FTIR-spectra of PEGF formed after 1–8 h of polycondensation. 

The FTIR spcterum of PEFG has typical –C–O– signal of the ether bond in PEG at 1100 cm
−1

, in addi-

tion, it contains the peaks at 1730 and 1640 cm
−1

 which respectively correspond to the –C=O and –C=C– 

groups of the fumaryl moiety [12] (Fig. 2). From the FTIR-spectrum of the macromonomer it is obvious that 

with the time the intensity of –C=C– bond decreases, whereas the signal of ester bond –O–C=O– increases 

gradually with deepening the conversion. Note, after 8 h of polycondensation process in PEGF there are still 

active double bonds that are required for further polymerization and the preparation of hydrogels containing 

cross-linked network [12]. 

From Figure 2, the ratios of number of carboxylic groups –O-C=O– and unsaturated double bonds  

–C=C– to the –C=O bonds for different duration of polycondensation reaction were calculated (Fig. 3). The 

dependence shows decreasing number of double bonds and, simultaneously, increasing number of ester 

bonds during the reaction. This effect was previously observed in literature [9]. 
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Figure 2. FTIR-spectra of PEGF obtained after different time of polycondensation of PEG-600 and fumaric acid 
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Figure 3. The dependence of the ratio of number of double bonds –C=C– and carboxylic groups –COO– to the –C=O 

bonds in chemical structure of PEGF, obtained at different time of polycondensation of PEG-600 and fumaric acid 

The average degree of unsaturation of the samples obtained at different time of the reaction determined 

by bromatometry decreases from 7.5 to 5.1 % as the the reaction time increases (Fig. 4). The results of 

bromatometric analysis are in good correlation with the FTIR-spectroscopy data also indicating on the de-

crease of the number of double bonds during the reaction (Fig. 4). Thus, after 8 h of polycondensation, only 

5 % of double bonds which are essential for further preparation of the double network remain unchanged. 

 

 

Figure 4. Degree of unsaturation for the samples of PEGF obtained  

at a different time of polycondensation of PEG-600 and fumaric acid 

The following chemical shifts are observed on the spectra of the macromonomer [13]: 1) 3.7–

3.9 ppm — the peak of methylene protons (related to –CH2– groups conjugated with the ether groups); the 

peak is characteristic for molecules of polyethylene glycol, built-in the structure of PEGF; 2) 4.3–4.5 ppm — 

the groups of peaks of methylene protons (related to –CH2– groups conjugated with the ester groups); 3) 6.7–

6.8 ppm — signal related to the protons of double bond of fumaric acid built-in the structure of PEGF (poly-

ester). These peak positions are consistent with the 
1
H NMR data presented in the works [9, 12] for PEGF. 

Thus, NMR data confirm the chemical structure of the synthesized macromonomer (Fig. 5). 
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Figure 5. 
1
H NMR-spectra of PEGF obtained after 8 h of polycondensation 

From the NMR spectrum, the ratio of integrals of the peaks of double bonds and of methylene groups of 

PEG600 was calculated, which is equal to 0.004. The obtained amount of the double bonds in PEGF is 11 % 

of that theoretically estimated for the “ideal” structure of PEGF to be obtained in polycondensation. There-

fore, NMR data are in semi-qualitative agreement with the FTIR and bromatometry results presented above, 

and they show that a certain fraction of double bonds remains in the PEGF structure after synthesis. 

Thus, 
1
H NMR- and FTIR-spectroscopies confirmed the formation of PEGF by polycondensation of 

PEG and fumaric acid. At high conversions (after more than 4 hours of polycondensation) the degree of un-

saturation of PEGF decreases, so that after 8 h of reaction the amount of unsaturated double bonds in its 

structure is sufficiently reduced. 

Conclusions 

Macromonomers of PEGF with the molecular weight of about 6 kDa has been synthesized by 

polycondensation of PEG-600 with fumaric acid for 8 h. The time-dependence of the structure of PEGF was 

analyzed using bromatometry and FTIR- and 
1
H NMR-spectroscopies. According to bromatometric analysis 

and IR-spectroscopy, the amount of unsaturated –CH=CH– groups of fumaric acid in PEGF decreases from 

4 to 8 h of synthesis. After 8 h of polycondensation the bromatometry and 
1
H NMR-spectroscopy both indi-

cate the sufficiently smaller amount of unsaturated double bonds that are required for further polymerization 

of PEGF for the formation of hydrogels for biomedical purposes. 
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