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A New Method for the Synthesis of Ald(ket)azines and their Antioxidant Activity 

The synthesis of biologically active compounds frequently requires the establishment of specific conditions 

(such as pressure, temperature, medium, solvent, and catalyst) or the use of expensive equipment. An im-

portant task is the search for simple synthesis methods for promising biologically active compounds. This pa-

per presents data on a rapid method for the synthesis of ald(ket)azines (azines) with a variety of biological 

and physicochemical properties. Hydrazine hydrate reacts readily by condensation with aromatic (heterocy-

clic) aldehydes or ketones to form azines. The reaction occurs at room temperature in acetic acid. The synthe-

sis is completed in a short period of time, between 5 and 15 seconds, with yields of 32 % to 98 % after recrys-

tallization. The formation rate of ald(ket)azines depends on the reaction medium and the presence of hydro-

gen donors in the system, and increases with increasing acidity. The investigation did not yield any discerni-

ble pattern in the impact of electron-donor or electron-acceptor substituents in the para-, meta-, or ortho-

positions at aromatic (heterocyclic) aldehydes or ketones on the azines yield. The synthesized compounds 

were studied using 1H NMR spectroscopy, chromato-spectrometry, and elemental analysis. The Ferric Reduc-

ing Antioxidant Power (FRAP) spectrophotometric method was used to study the antioxidant activity of the 

compounds obtained. Compounds with an N,N-dimethyl- or N,N-diethyl group in the para-position of the al-

dehyde fragment of azine showed a significant antioxidant effect. The results obtained exceed the antioxidant 

value of ascorbic acid — an industrially used oxidation inhibitor. 

Keywords: condensation reaction, aldazines, ketazines, azines, synthesis, Schiff bases, hydrazinium 

monoacetate. 

 

Introduction 

Schiff bases (imines, azomethines, azines) containing the structural element (–CR=N–) represent a fair-

ly common class of organic compounds with a wide range of practical applications. They possess 

antidiabetic [1], antitumour [2, 3], antimicrobial [4‒7], antifungal [8, 9], cytotoxic [10, 11], luminescent 

properties [12, 13], and are used as plant growth regulators [14], chemosensors [15, 16], liquid crystals [17] 

or universal building blocks in organic synthesis [18, 19]. 

The known methods for azines synthesis are based on the interaction of hydrazine hydrate or its salts 

with aromatic aldehydes (ketones) in various solvents at different temperatures and stirring [9, 16, 17, 20–

27], without solvent [28, 29] (with the addition of iodine/bromine [30], aluminium oxide [31, 32]) or using 

different catalysts (ruthenium complex [33], nickel [34] or its salts [35], bismuth [36]). 

Many of the described methods for azines synthesis have a number of disadvantages, such as special re-

action conditions, long reaction time, low yields and the use of expensive catalysts. The aim of our work is to 

develop a simple and rapid method for the ald(ket)azines synthesis. 
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Experimental 

Materials 

General Information: starting hydrazine hydrate (64 %, CAS 7803-57-8), phenylmethanal (≥99.5 %, CAS 

100-52-7), 4-bromobenzaldehyde (99 %, CAS 1122-91-4), 4-chlorobenzaldehyde (97 %, CAS 104-88-1), 

4-nitrobenzaldehyde (98 %, CAS 555-16-8), 4-methoxybenzaldehyde (≥98 %, CAS 123-11-5), 4-(dimethyl-

amino)benzaldehyde (98 %, CAS 100-10-7), 4-(diethylamino)benzaldehyde (99 %, CAS 120-21-8), 

4-hexyloxybenzaldehyde (99 %, CAS 5736-94-7), 4-decyloxybenzaldehyde (CAS 24083-16-7), 2-thiophen-

aldehyde (98 %, CAS 98-03-3), 2-hydroxybenzaldehyde (≥98 %, CAS 90-02-8), 2-hydroxy-1-naphth-

aldehyde (CAS 708-06-5), 3-pyridinecarbaldehyde (98 %, CAS 500-22-1), 3-nitrobenzaldehyde (99 %, CAS 

202-772-6), acetophenone (≥98 %, CAS 98-86-2), 4-nitroacetophenone (98 %, CAS 100-19-6), 2-hydroxy-

acetophenone (99 %, CAS 118-93-4), from Aldrich, Acros Organics, were used without purification. 

The structure of the obtained compounds was confirmed by 
1
H NMR spectroscopy, chromato-mass 

spectrometry and elemental analysis. Mass spectra were recorded on an Agilent Technologies 6890N/5975B 

chromatography-mass spectrometer (USA); 
1
H NMR spectra were recorded on a Bruker Advance III 400 

(Bruker Corporation, USA) in DMSO-d6, CDCl3 solvent; 
1
H chemical shifts are given relative to SiMe4. El-

emental analysis was performed on a VARIO EL CUBE elemental analyzer (Elementar, Germany). Melting 

points were determined on a Stuart SMP40 device (Stuart Scientific, UK). 

General Procedure for the Synthesis of Ald(ket)azines 3a-r 

0.04 mol of aldehyde (ketone) 1a-r and 0.17 mol of acetic acid were mixed until completely dissolved 

and 0.026 mol of hydrazine hydrate 2 was added dropwise to the resulting solution under stirring. After 5‒15 

seconds, the precipitate (compounds 3f, g do not precipitate, they are precipitated by water) was neutralized 

with ammonia solution (except compound 3k, r), washed with water, filtered and recrystallized from ben-

zene, chloroform or dimethyl sulfoxide: ethanol mixture (ratio 1:1). 

1,2-bis(benzylidene)hydrazine 3a. Yield is 3.03 g (73 %), yellow crystals, m.p. 92–93 °С (92–93 °С 

[37]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 7.39–7.44 m (6H, Ar-H), 7.80–7.85 m (4H, Ar-H), 

8.64 s (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 208 (70.3), 131 (100), 104 (26.7), 90 (3.9), 77 (37.5). 

Found, %: C 80.70; H 5.79; N 13.42. C14H12N2. Calculated, %: C 80.74; H 5.81; N 13.45. 

1,2-bis(4-bromobenzylidene)hydrazine 3b. Yield is 6.92 g (95 %), yellow crystals, m.p. 230–231 °С 

(223–224 °С [28]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ: 7.71–7.74 m (4H, Ar-H, J 8.0 Hz), 7.83–

7.85 m (4H, Ar-H, J 8.0 Hz), 8.65 s (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 366 (59.4) [M]
+
, 209 (100), 

183 (18.7), 156 (2.2). Found, %: C 45.90; H 2.71; N 7.62. C14H10N2Br2. Calculated, %: C 45.94; H 2.75; 

N 7.65. 

1,2-bis(4-chlorobenzylidene)hydrazine 3c. Yield is 5.30 g (96 %), yellow crystals, m.p. 208–210 °С 

(208–210 °С [37]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 7.38–7.42 m (4H, Ar-H, J 8.0 Hz), 

7.73–7.77 m (4H, Ar-H, J 8.0 Hz), 8.56 s (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 277 (51.6) [M]
+
, 

165 (100), 152 (2.3), 138 (28), 111 (29.7). Found, %: C 60.59; H 3.58; N 10.06. C14H10N2Cl2. Calculated, %: 

C 60.67; H 3.64; N 10.11. 

1,2-bis(4-nitrobenzylidene)hydrazine 3d. Yield is 5.42 g (91 %), yellow crystals, m.p. 312–313 °С 

(312–313 °С [37]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ, ppm: 8.14–8.16 m (4H, Ar-H, J 8.0 Hz), 

8.33–8.35 m (4H, Ar-H, J 8.0 Hz), 8.78 s (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 298 (46.7) [M]
+
, 

176 (100), 149 (6.5). Found, %: C 56.30; H 3.35; N 18.74. C14H10N4O4. Calculated, %: C 56.38; H 3.38; 

N 18.79. 

1,2-bis(4-methoxybenzylidene)hydrazine 3e. Yield is 5.02 g (94 %), yellow crystals, m.p. 177–

179 °С (178 °С [37]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ, ppm: 3.84 s (6Н, 2CH3), 7.03–7.07 m 

(4H, Ar-H, J 8.0 Hz), 7.79–7.83 m (4H, Ar-H, J 8.0 Hz), 8.59 s (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 

268 (100) [M]
+
, 161 (65), 134 (21), 107 (3.1). Found, %: C 71.58; H 5.97; N 10.40. C16H16N2O2. Calculated, 

%: C 71.62; H 6.01; N 10.44. 

1,2-bis(4-N,N-dimethylaminobenzylidene)hydrazine 3f. Yield is 5.73 g (97 %), yellow crystals, m.p. 

263–264 °С (263-264 °С [38]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ, ppm: 3.02 s (12Н, 4CH3), 

6.78–6.81 d (4H, Ar-H, J 12.0 Hz), 7.65–7.68 d (4H, Ar-H, J 12.0 Hz), 8.48 s (2H, 2 CH=N). Mass spec-

trum, m/z (Irel, %): 294 (100) [M]
+
, 174 (21.8). 147 (36), 133 (2.3), 120 (7.5). Found, %: C 73.40; H 7.51; 

N 19.00. C18H22N4. Calculated, %: C 73.44; H 7.53; N 19.03. 

1,2-bis(4-N,N-diethylaminobenzylidene)hydrazine 3g. Yield is 6.86 g (98 %), yellow crystals, 

m.p. 195–197 °С (193 °С [39]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 1.17–1.20 t (12Н, 4CH3), 



Gorokhov, V.Yu., Zabolotnykh, S.A. et al. 

6 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 4(116) 

3.37–3.42 t (8Н, 4CH2), 6.64–6.66 d (4H, Ar-H, J 8.0 Hz), 7.63–7.76 d (4H, Ar-H, J 8.0 Hz), 8.52 s (2H, 2 

CH=N). Mass spectrum, m/z (Irel, %): 350 (100) [M]
+
, 202 (9.4), 175 (15.6), 161 (20.3), 148 (1.6). Found, %: 

C 75.31; H 8.58; N 15.94. C22H30N4. Calculated, %: C 75.39; H 8.63; N 15.98. 

1,2-bis-(4-hexyloxybenzylidene)hydrazine 3h. Yield is 6.91 g (97 %), yellow crystals, m.p. 120–

127 °С (turbid phase), at 128 °С full clearing. 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 0.88–0.92 t 

(6Н, 2CH3), 1.31–1.36 m (8Н, 4CH2), 1.42–1.50 m (4Н, 2CH2), 1.75–1.82 m (4H, 2CH2) 3.98–4.01 t (4H, 2 

ОСН2, J 8.0, 4.0 Hz), 6.92–6.94 d (4H, Ar-H, J 8.0 Hz), 7.75–7.77 d (4H, Ar-H, J 8.0 Hz), 8.60 s (2H, 2 

CH=N). Mass spectrum, m/z (Irel, %): 408 (100) [M]
+
, 231 (89), 206 (2.2), 204 (4.3), 130 (2.1), 41 (45.5). 

Found, %: C 76.38; H 8.84; N 6.81. C26H36N2O2. Calculated, %: C 76.43; H 8.88; N 6.86. 

1,2-bis(4-decyloxybenzylidene)hydrazine 3i. Yield is 9.15 g (88 %), yellow crystals, m.p. 121–128 °С 

(turbid phase), at 129 °С full clearing. 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 0.86–0.89 t (6Н, 

2CH3), 1.26–1.30 m (16Н, 8CH2), 1.32–1.37 m (8Н, 4CH2), 1.42–1.49 m (4Н, 2 СН2), 1.75–1.82 m (4Н, 

2 CH2), 3.98–4.01 t (4H, 2 ОСН2, J 4.0, 4.0 Hz), 6.92–6.94 d (4H, Ar-H, J 8.0 Hz), 7.75–7.77 d (4H, Ar-H, 

J 8.0 Hz), 8.60 с (2H, 2 CH=N). Mass spectrum, m/z (Irel, %): 520 (87.4) [M]
+
, 287 (100), 260 (10.5), 130 (7). 

Found, %: C 78.35; H 10.00; N 5.32. C34H52N2O2. Calculated, %: C 78.41; H 10.06; N 5.38. 

1,2-bis(thiophen-2-ylmethylene)hydrazine 3j. Yield is 4.02 g (93 %), yellow crystals, m.p. 158–

159 °С (161 °С [40]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 7.09–7.11 t (2Н, Ar-H, J 4.0, 4.0 Hz), 

7.39–7.41 d (2Н, Ar-H, J 8.0 Hz), 7.45–7.46 d (2Н, Ar-H, J 4.0 Hz), 8.75 s (2Н, CH=N). Mass spectrum, 

m/z (Irel, %): 220 (100) [M]
+
, 137 (7.5), 110 (30.5), 96 (9.8), 83 (5.9). Found, %: C 54.47; H 3.60; N 12.66; 

S 29.07. C10H8N2S2. Calculated, %: C 54.52; H 3.66; N 12.72; S 29.10. 

1,2-bis(2-hydroxybenzylidene)hydrazine 3k. Yield is 4.56 g (95 %), yellow crystals, m.p. 224 °С 

(224 °С [41]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ, ppm: 7.00–7.02 d (4H, Ar-H, J 8.0 Hz), 7.41–

7.45 m (2H, Ar-H), 7.70–7.72 m (2H, Ar-H, J 8.0 Hz), 9.00 s (2H, 2 CH=N), 11.08 w.s. (2Н, 2OH). Mass 

spectrum, m/z (Irel, %): 240 (100) [M]
+
, 147 (31.3), 120 (25), 106 (1.6), 93 (16.4). Found, %: C 69.90; H 4.98; 

N 11.60. C14H12N2O2. Calculated, %: C 69.99; H 5.03; N 11.66. 

1,2-bis((2-hydroxynaphthalen-1-yl)methylene)hydrazine 3l. Yield is 6.56 g (96.5 %), yellow crys-

tals, m.p. 233 °С (233 °С [28]). 
1
Н NMR spectrum (400.0 MHz, DMSO-d6) δ, ppm: 7.23–7.31 d (2H, Ar-H, 

J 8.0 Hz), 7.45–7.49 t (2H, Ar-H, J 4.0, 16.0 Hz), 7.62–7.65 t (2H, Ar-H, J 8.0, 8.0 Hz), 7.92–7.94 d (2Н, 

Ar-H, J 8.0 Hz), 8.03–8.05 d (2H, Ar-H, J 8.0 Hz), 8.61–8.64 d (2Н, Ar-H, J 12.0 Hz), 9.91 s (2H, 2 CH=N). 

Mass spectrum, m/z (Irel, %): 340 (52.7) [M]
+
, 184 (0.9), 170 (100), 156 (1.6), 143 (5.3). Found, %: C 77.59; 

H 4.70; N 8.18. C22H16N2O2. Calculated, %: C 77.63; H 4.74; N 8.23. 

1,2-bis(pyridin-3-ylmethylene)hydrazine 3m. Yield is 1.76 g (42 %), yellow crystals, m.p. 150–

152 °С (144–145 °С [42]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 7.34–7.37 d.d (2Н, Ar-H, J 4, 

4 Hz), 8.16–8.19 d.t (2Н, Ar-H, J 4, 2, 2, 2 Hz), 8.63 s (2Н, Ar-H), 8.67–8.68 d.d (2Н, 2CH=N, J 1.6, 

1.6 Hz), 8.97 d (2Н, 2CH=N, J 1.8 Hz). Mass spectrum, m/z (Irel,%): 210 (10.9) [M]
+
, 132 (100), 105 (10.9), 

91 (1.6), 78 (11.7). Found, %: C 68.51; H 4.75; N 26.59. C12H10N4. Calculated, %: C 68.56; H 4.79; N 26.65. 

1,2-bis(3-nitrobenzylidene)hydrazine 3n. Yield is 4.70 g (79 %), yellow crystals, m.p. 188–190 °С 

(192–194 С [28]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 7.82–7.84 t (2Н, Ar-H, J 8, 8 Hz), 8.32–

8.39 m (4Н, Ar-H), 8.72-8.73 t (2Н, Ar-H, J 1.8, 1.8 Hz) 8.87 s (2Н, 2CH=N). Mass spectrum, m/z (Irel, %): 

298 (67.8) [M]
+
, 252 (4.3), 176 (100), 149 (8.7), 130 (26.1), 122 (2.4), 117 (2.2), 103 (25),89 (19.6), 

76 (29.3). Found, %: C 56.36; H 3.35; N 18.77. C14H10N4O4. Calculated, %: C 56.38; H 3.38; N 18.79. 

1,2-bis(1-phenylethylidene)hydrazine 3o. Yield is 4.32 g (91.5 %), yellow crystals, m.p. 129–131 °С 

(123–125 °С [43]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 2.32 s (6Н, 2CH3), 7.38–7.43 m (6H, 

Ar-H), 7.88–7.92 m (4H, Ar–H). Mass spectrum, m/z (Irel,%): 236 (44) [M]
+
, 221 (100), 159 (20.3), 132 (9.4), 

118 (23.4), 104 (9.4), 77 (50). Found, %: C 81.28; H 6.79; N 11.81. C16H16N2. Calculated, %: C 81.32; 

H 6.82; N 11.85. 

1,2-bis(1-(4-nitrophenyl)ethylidene)hydrazine 3p. Yield is 5.93 g (91 %), orange crystals, m.p. 220–

221 °С (204 °С [44]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 2.35 s (6Н, 2CH3), 8.05–8.07 d (4H, 

Ar-H, J 8.0 Hz), 8.25–8.27 d (4H, Ar–H, J 8.0 Hz). Mass spectrum, m/z (Irel, %): 326 (48.4) [M]
+
, 311 (100), 

296 (4.7), 204 (14), 177 (4.7), 163 (7.81), 149 (5.5). Found, %: C 58.83; H 4.32; N 17.15. C16H14N4O4. Cal-

culated, %: C 58.89; H 4.32; N 17.17. 

1,2-bis(1-(2-hydroxyphenyl)ethylidene)hydrazine 3r. Yield is 1.77 g (32 %), yellow crystals, 

m.p. 201–202 °С (197–199 С [45]). 
1
Н NMR spectrum (400.0 MHz, CDCl3) δ, ppm: 6.87–6.91 t (2Н, Ar-H, 

J 8.0, 4.0 Hz), 6.99-7.01 d (2Н, Ar-H, J 8.0 Hz), 7.31–7.35 t (2Н, Ar-H, J 8.0, 8.0 Hz), 7.58–7.61 d.d (2H, 

Ar-H, J 4.0, 4.0 Hz), 13.07 s (2H, 2OH). Mass spectrum, m/z (Irel, %): 268 (100) [M]
+
, 147 (9.8), 134 (34.7), 
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120 (15.1), 106 (3), 93 (5.9). Found, %: C 71.59; H 6.00; N 10.42. C16H16N2O2. Calculated, %: C 71.62; 

H 6.01; N 10.44. 

Procedure for Antioxidant Activity Determination by the FRAP Method 

The antioxidant activity (AOA) of ald(ket)azines 3a-r was determined by the FRAP spectrophotometric 

method [46]. 

Ascorbic acid (AA), as one of the known antioxidants, was used as a reference [47]. Solutions with AA 

concentrations of 2.0–3.0·10
–3

 mol·L
–1

 were prepared by dissolving an accurate suspension in water on the 

determination day, and 1.0 mL of organic solvent was added to AA aliquots for analysis. The samples inves-

tigated were dissolved in ethanol or DMSO, and the reagent content in the solutions was 4.0×10
–4

 or  

1.0×10
–3

 mol·L
–1

, respectively. The optical density of the solutions was measured on an SF-2000 spectropho-

tometer (Spektr, Russia) at λ = 510 nm in 10 mm cuvettes against a blank experiment [48]. Aliquots of 0.2–

0.4 mL of the reagent solutions were taken for analysis, the corresponding organic solvent was added to the 

total volume of 1.0 ml, the AOA values were calculated from the calibration graph plotted from the AA con-

tent using the formula: 

АОА = 
AA, CG

r

n

n
, 

where nAA, CG is the amount of ascorbic acid found from the calibration graph, moles; nr is the amount of rea-

gent in the aliquot for analysis, moles. 

Results and Discussion 

The use of methanol [24], ethanol [21], toluene [25] or butanone-2 [17] is known to produce 

ald(ket)azines after 3, 5, 12 and 24 h, respectively. It has also been reported in the literature that the reaction 

rate of hydrazones or azines formation depends on the pH of the medium [49–53]. In contrast with the previ-

ously mentioned methods for the synthesis of ald(ket)azines, we carried out a reaction in an acetic acid me-

dium (8.5 eq.) involving aromatic or heterocyclic aldehydes (ketones) 1a-r (2 eq.) and hydrazine hydrate 2 

(1.3 eq.) at room temperature (Scheme 1). 

 

 

Scheme 1. Synthesis of ald(ket)azines 

The azines 3a-e, h-p formation was observed in 5–15 seconds after dropping hydrazine hydrate into the 

aldehyde (ketone) and acetic acid solution under stirring. Compounds 3f, g did not precipitate and were pre-

cipitated with distilled water. Compound 3r was formed as oil, which crystallized after 48 hours. The yield 

of azines 3a-r after recrystallization was 32–98 %. 



Gorokhov, V.Yu., Zabolotnykh, S.A. et al. 

8 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 4(116) 

During the experiment, no clear trend of the effect of electron-donating or electron-accepting substitu-

ents in para-, meta- or ortho-positions in aldehydes or ketones on the azines 3a-l, o, p yield was observed. 

The use of 3-pyridinecarbaldehyde 1m or 2-hydroxyacetophenone 1r resulted in lower yields. 

The high formation rate of ald(ket)azines 3a-p is achieved by acid catalysis. The authors [50–52] de-

scribed the mechanism of hydrazones formation. A similar mechanism for the ald(ket)azines formation can 

be assumed (Scheme 2). 
 

 

Scheme 2. Proposed mechanism for the ald(ket)azines formation 

During the interaction between aldehydes/ketones 1 and hydrazine hydrate 2 in acidic medium, the pro-

tonation of the hydrazine hydrate molecule decreases its nucleophilicity. In contrast, acetic acid promotes an 

increase in the fractional positive charge on the carbon atom in the carbonyl group, which compensates for 

the decrease in hydrazine nucleophilicity [50–52]. In addition, at low pH values there is an increase in the 

rate of hydrazinocarbinols dehydration. This also compensates for the reduced nucleophilicity of hydrazine 

and allows the final ald(ket)azines to be obtained in a shorter time [50–52]. 

The mechanism described for the formation of ald(ket)azines is hypothetical, as the reaction may pro-

ceed through either one or two amino groups of hydrazine, which requires further study. 

AOA values were determined for the obtained compounds 3a-g, j, k, m-r. The results are presented in 

the table. 

T a b l e  

Antioxidant activity of 3a-r compounds determined by the FRAP method 

No. Compound EtOH, mol·L
-1

 АОА DMSO, mol·L
-1

 АОА 

1 2 3 4 5 6 

1 3a 0.001 0.12±0.01 0.001 0 

2 3b < 0.0004 – 0.001 0.13±0.01 

3 3c 0.0004 0.36±0.03 0.001 0.11±0.02 

4 3d < 0.0004 – 0.0004 0.12±0.01 

5 3e 0.001 0.16±0.01 0.001 0 

6 3f 0.0004 1.70±0.02 0.001 1.53±0.05 



A New Method for the Synthesis of Ald(ket)azines and their Antioxidant Activity  

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 9 

C o n t i n u a t i o n  o f  t h e  T a b l e  

1 2 3 4 5 6 

7 3g 0.0004 1.18±0.01 0.001 1.35±0.04 

8 3h < 0.0004 – < 0.0004 – 

9 3i < 0.0004 – < 0.0004 – 

10 3j 0.001 0.43±0.02 0.001 0.23±0.01 

11 3k 0.001 0 0.001 0.14±0.02 

12 3l < 0.0004 – 0.001 – 

13 3m 0.001 0 0.001 0 

14 3n < 0.0004 – 0.001 0 

15 3o 0.001 0.14±0.01 0.001 0 

16 3p < 0.0004 – 0.001 0 

17 3r 0.001 0.43±0.02 0.001 0.10±0.01 
Note: “–” — compound is insoluble. 

 

The compounds 3a-r were dissolved in 95 % ethanol or dimethyl sulfoxide. For compounds 3h, i, l no 

AOA study was carried out due to their low solubility in both solvents. The AOA for compounds 3b, d, n, p 

was studied only in DMSO solution because of their poor solubility in EtOH. 

It was found that compounds 3a, e, o exhibited low AOA in ethanol solution (0.12/0.16/0.14) and in 

DMSO solution the AOA value was 0. 

Moderate AOA values were found for compounds 3c, j, r in ethanol (0.36/0.43/0.43), in DMSO the 

AOA values were reduced by more than half (0.11/0.23/0.10). 

The significant AOA effect was exhibited by compounds 3f (1.70±0.02/1.53±0.05) and 3g 

(1.18±0.01/1.35±0.04) in ethanol/DMSO solution. The AOA values exceed those of ascorbic acid (reference) 

by 70/53 % (ethanol/DMSO) for compound 3f and by 18/35 % (ethanol/DMSO) for compound 3g. 

During the study of the AOA, no specific dependence of its values on the use of different electron-

donor or electron-acceptor substituents in ald(ket)azines 3a-r was revealed, except for compounds containing 

N,N-dimethyl- or N,N-diethyl groups in the para-position of the aldehyde fragment of ald(ket)azine. 

Conclusions 

The interaction of hydrazine hydrate with aromatic or heterocyclic aldehydes (ketones) in an acetic acid 

medium results in the rapid formation of ald(ket)azines in quantitative yields. The high rate of the condensa-

tion reaction is due to the use of acetic acid, which provides optimal conditions for the reaction to proceed. 

Our findings indicate that compounds containing N,N-alkyl groups in the para-position of the ald(ket)azine 

aldehyde fragment exhibit antioxidant values that exceed those of ascorbic acid. 
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