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A Novel Mannich Based Metal II Complexes: Synthesis and Characterization  

of Magnetic, Conductivity and Antimicrobial Properties 

A novel Mannich base (2R,9R)-2-((S)-((2-aminoethyl)amino)(2-hydroxyphenyl)methyl)-6-hydroxy-9-

phenyl-2,3,4,9-tetrahydro-1H-xanthen-1-one (LI), composed from xanthene, salicylaldehyde, and ethylenedi-

amine, was employed to synthesize unique complexes of Ni(II), Mn(II), Cr(II), Co(II), and Cu(II). The struc-

tural characteristics of the complexes were determined by studying microanalytical findings and using analyt-

ical methods such as EPR, FT-IR, 1H & 13C NMR, and UV-visible spectroscopy. The electronic spectra of the 

complexes suggested that the metal ion is fenced with octahedral structure. The molar conductivity of the 

metal chelates in DMSO was shown in the range of 18–28 Ω–1mol–1cm2. The EPR studies of the copper com-

plex dissolved in dimethyl sulfoxide (DMSO) was obtained at temperature of 300 K, and its unique character-

istics were analysed. The antimicrobial potential of the ligand and its complexes has been thoroughly exam-

ined towards K. pneumaniae, S. aureus, P. aeruginosa, E. coli, C. albicans, C. neoformans, M. audouinii, A. 

niger microorganisms. Experimental results have demonstrated that all of the complexes exhibit substantial 

antimicrobial action when related to both the unbound ligand and the standard. Furthermore, the validity of 

the biological research was verified through molecular docking antifungal and antibacterial tests. Overall, the 

obtained results confirm the multidirectional antimicrobial efficacy of the new Mannich base complexes and 

demonstrate their high pharmaceutical potential for further studies. 
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Introduction 

The emergence of antimicrobial resistance has evolved into a major worldwide health crisis, threatening 

to revert mortality rates to those observed in the pre-antibiotic era. Recent research by Murray et al. indicated 

that bacterial antimicrobial resistance was responsible for approximately 1.27 million fatalities in 2019 [1–3]. 

The alarming statistics are partly attributable to the incorrect and indiscriminate use of antibiotics, inadequate 

infection and disease prevention measures, and unequal access to quality, inexpensive medication [4]. As a 

result, bacteria have evolved several resistance mechanisms against nearly all medicines available today, 

jeopardizing the continuation of the 80-year “era of antibiotics”. Examples of both innate and derived mech-

anisms of drug resistance in bacteria encompass target protection, alteration of target sites, enzymatic inacti-

vation of antibiotics, active efflux, reduced inflow, and biofilm formation [5]. Microbial infestation refers to 

the process in which microbes, which include bacteria, viruses, and fungi, invade a living thing, replicate 

within it, and communicate with the host tissue [6]. These pathogens provide a significant public hazard to 

infections related to healthcare and are accountable for the mainstream of diseases in hospitals, leading to 

increased death and load on world health systems [7]. Specifically, metal complexes with heterocyclic lig-

ands have a dominant role in medicinal chemistry due to its broad spectrum of characteristics [8–12]. Transi-

tion metal complexes are regarded as highly effective metallo-drugs for remedying the hazards posed by mi-

croorganisms [13, 14]. 

The production of heterocycles containing oxygen and nitrogen has long been a of great interest in or-

ganic chemistry. These compounds are often found in the fields of drug design, medical and pharmaceutical, 

and materials science [15–17]. Chromene and its analogues, specifically 2-amino-4H-chromene and 2H-

chromene-2-one [6, 18], are a significant group of oxygen-containing heterocycles. These compounds incor-

porate a cyano moiety at the C-3 location which provides the possibility of being utilized in the dealing of 

several illnesses comprising psoriatic arthritis, rheumatoid arthritis, cancer therapy, Alzheimer’s disease, 

Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis [19–22]. They commonly occur 
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in the fundamental structure of numerous herbal remedies and manufactured potential medicines. They are of 

great importance in medicinal chemistry due to its significant pharmacological functions, which include anti-

fungal, antioxidant, antiproliferative, antimicrobial, antitumor, anticoagulant, and anti-allergic proper-

ties (Fig. 1) [23–27]. In recent decades, various material science applications like laser dyes, optical bright-

eners, and fluorescence markers have been developed [28–30]. In addition, they find use in beauty products, 

recyclable agrochemicals, colourants, and other areas [31–33]. 

 

 

Figure 1. 2-amino-4H-chromene (1–4) and tetraketones (5–6) with probable optoelectronic and medicinal uses 

Mannich transformations provide an unswerving and effectual method for synthesising β-amino car-

bonyl substances, which are important in the manufacturing of various medicines, synthetic materials, and 

natural substances [34–36]. These methods are used to produce distinctive carbon-carbon bonds in the crea-

tion of nitrogen-bearing substances in organic synthesis [37, 38]. Mannich bases play a crucial role in medic-

inal chemistry due to their ability to form substantial 3d-metal complexes with unique therapeutic value [39, 

40]. The progress of innovative catalytic approaches for the fabrication of Mannich bases is crucial in the 

field of synthetic chemistry. Several scholars have documented Mannich derivatives having catalysis ac-

tion [41–43]. The complexation behaviour of Mannich analogues was crucial in advancing the field of inor-

ganic chemistry [44]. 

Metal complexes with heterocyclic ligands demonstrate a wide range of actions, including antimicrobi-

al, antibacterial, anti-inflammatory, antioxidant, antitumor, antiviral, antidiabetic, antifungal, antimalarial, 

anticonvulsant, anticancer, antiamoebic, antiproliferative, and anti-HIV properties [45–49]. However, the 

production of metal complexes mediated by Xanthene is not well documented. Consequently, this study was 

conducted on the Mannich base ligand (L1), emphasizing its biological relevance. The current investigation 

was undertaken on the Mannich base ligand (L1), taking into consideration its biological significance. The 

compound was produced through the condensation reaction of xanthene, salicylaldehyde, and ethylenedia-

mine. The Mannich base that was synthesised was subsequently coordinated with chlorides of Mn(II), Co(II), 

Ni(II), Cr(II), and Cu(II). The synthesised compounds were characterised using several spectroscopic and 

chemical approaches, and their antimicrobial capabilities were assessed. 
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Experimental 

Chemistry 

All the substances and solvents used were of extremely pure grade (Analar grade, A.R.) and obtained 

from Sigma-Aldrich. The identification of complexes was achieved by acquiring FT-IR spectra of the ligand 

and complexes within the frequency array of 400–4000 cm–1. This was done by KBr pellets and an Agilent 

Resolutions spectroscopy. The absorbance spectra of the ligand (L1) and associated complexes (1-5) were 

acquired using a Shimadzu UV mini-1240 UV spectroscopy in the wavelength range of 300‒1100 nm to de-

termine the potential electronic transitions. 

Synthesis of Ligand (L1) 

A blend of salicylaldehyde (2.4 mL, 0.02 mol), xanthene (5.85 g, 0.02 mol), and ethylenediamine 

(1.2 mL, 0.02 mol) were pulverised together in a mortar for a duration of 10 minutes through grindstone 

chemistry technique. The progression of the reaction was monitored by thin-layer chromatography (TLC). 

Once the chemical process designated by TLC was finished, the resulting mixture was placed in crushed ice. 

The raw product was filtered and dehydrated. To purify the ligand, it was recrystallized using hot ethanol. 

The production of ligand (L1) is shown in Figure 2. 

 

 

Figure 2. Preparation of ligand (L1) 

Synthesis of Metal Complexes (1-5) 

Under reflux, a hot ethanolic solution containing (0.02 mol) of ligand L1 was gradually combined with 

(0.01 mol) of metal chlorides in a hot ethanolic solution with continuous stirring. After the final reaction 

stage, the reaction mixture was left at ambient temperature to evaporate. The impure metal complex was re-

fined by column chromatography employing a combination of elutant DCM:CH3CN:CH3OH (2:3:5 v/v) over 

silica gel. Metal complexes (1‒5) were synthesised as shown in Figure 3. 

 

 

Figure 3. Preparation of metal complexes (1‒5) 

Solubility Measurements 

The solubility of the ligand and complex in protic and aprotic solvents was determined. Water, alcohol, 

acetone, chloroform and dimethylsulfoxide were used as solvents. Based on the findings of the solubility 

evaluations more investigations were constructed. 
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Magnetic Susceptibility Measurement 

The combination of magnetic susceptibility investigations and absorbance spectra can be employed to 

determine the structure of the complex. Magnetic characteristics can be utilised to ascertain the stereochem-

istry of a metal ion complex with d 5, d 6, d 7, d 8, or d 9 electron configuration, specifically whether it adopts 

a tetrahedral, square planar, or octahedral arrangement. Additionally, these parameters can indicate if the 

complex is spin-free or spin-paired. The magnetic properties of the metal atoms in the current complexes 

were inspected utilizing a Gouy magnetic balance to identify the most favourable magnetic moment for each 

atom at ambient temperature. The Gouy tube was standardized with mercury(II) tetrathiocyanatocobal-

tate(II), also known as Hg[Co(SCN)4]. The diamagnetic modifications for several atomic and structural com-

ponents were determined using Pascal’s coefficients. The effective magnetic moments (µeff.) were deter-

mined based on the molar magnetic susceptibilities (Mcorr) of the complexes employing Curie’s formula, 

µeff = 2.84 [Mcorr T]1/2 B.M., where T represents the absolute temperature at which the measurements were 

made. The number of metal ions with unpaired electrons, 'n', can be calculated by analysing its effective 

magnetic moment, eff. The equation µS = [n (n+2)]½ demonstrates the contribution of the electronic spin ef-

fect (S) to the moment. 

Antibacterial Effect 

The ligand (L1) and its complexes (1‒5) were subjected to in vitro antibacterial evaluations towards 

P. aeruginosa (PA14), K. pneumoniae (342), E. coli (k12), and S. aureus (PS80) bacteria using the Kirby 

Bauer Disc diffusion technique [50]. Ciprofloxacin’s antibacterial effect was used as a standard. The bacteri-

al specimens were grown on petri plates containing nutrient agar medium. The test samples were made up of 

DMSO and placed inside a filter paper disc with a width of 5 mm and a width of 1 mm. Following a 24-hour 

period, the breadth of the inhibitory zone [51, 52] around each disc was assessed to determine its antibacteri-

al effectiveness. The discs were then positioned on the pre-existing plates and incubated at a temperature of 

37 °C. The minimum inhibitory concentrations (MIC) were employed to indicate the antibacterial effective-

ness of ligand (L1) and its associated complexes (1‒5). 

Antifungal Action 

The antifungal effect of ligand (L1) and its complexes (1‒5) was evaluated using the regular disc-agar 

diffusion approach [53, 54]. The antifungal activity was tested using A. niger (ATCC20611), C. neoformans 

(H99), C. albicans (WO-1), and M. audouinii (ATCC-10216) species. The materials underwent sterilisation 

by filtration through 0.22 m Millipore filters upon their dissolution in 10 % DMSO to achieve a target dosage 

of 30 mg/mL. Subsequently, antifungal tests were conducted using the disc diffusion method. A solution 

comprising 100 litres and 104 spores/mL of fungi was disseminated across PDA medium. The 6 mm diame-

ter discs were subjected to a treatment of 10 mL of the samples, with each disc weighing 300 g. Subsequent-

ly, the discs were placed on the agar that was contaminated. The conventional medication prescribed was 

clotrimazole. Negative controls were prepared using a 10 % solution of dimethyl sulfoxide (DMSO). The 

fungal specimens were cultured at 37 °C for 72 hours on inoculation plates. Plant-associated fungi were cul-

tivated at a temperature of 27 °C. The antifungal effectiveness was assessed by gauging the ZOI towards the 

investigated microorganisms. Every experiment in the present investigation was performed three times. 

Determination of MIC 

The microbial cultures often used to make 0.5 McFarland were cultured overnight at 37 °C. Each cul-

ture was inoculated in aseptic conditions with 1 mL of the specific bacterial culture (around 108 CFU/mL) 

from a minimum of a 10 mL tube nutritional broth medium. In sterile deionized water, five dilutions of lig-

and (L1), metal complexes (1‒5) (100, 75, 50, and 25 mg/mL) were made, as well as a blank sample (with-

out ligand (L1), metal complexes (1‒5)). All isolate evaluations were carried out in triplicate. The implanted 

tubes were maintained at 37 °C overnight. During the cultivation period, the perceived turbidity in every tube 

was evaluated. The MIC is demonstrated as the lowermost concentration of the observed strain without tur-

bulence. 

Molecular Docking 

The relationship and binding mechanism amongst the ligand (L1), complexes (1‒5), and the Mevalo-

nate 5-diphosphate decarboxylase (PDB ID: 1FI4) and Topimerase II DNA gyrase B (PDB ID: 1KZN) pro-

teins were examined through docking analyses using Autodock vina 1.1.2 software [55]. The crystal struc-

tures of Mevalonate 5-diphosphate decarboxylase (PDB ID: 1FI4) and Topimerase II DNA gyrase B (PDB 
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ID: 1KZN) were gotten from the Protein Data Bank for the purpose of assessing their antimicrobial and ca-

pabilities. The 3D conformation of ligand L1 and its complexes (1‒5) were obtained using ChemBio Office 

suite software. The required inputs for docking process were generated through the AutoDock Tools 1.5.6 

software. The grid dimensions for the 1KZN receptor was determined to have a centre position at 

x-coordinate 18.839, y-coordinate 26.702, and z-coordinate 37.939. The parameters of the grid are as fol-

lows: size_x = 22, size_y = 20, and size_z = 20. The distance between each point on the grid is 1.0 Å. The 

grid dimensions for the 1FI4 receptor were determined to have a centre position of x: 21.935, y: 57.745, and 

z: 20.018, with size of x: 24, y: 22, and z: 24, with a spacing of 1.0 Å. The exhaustiveness score was as-

signed a numerical value of 8. The remaining settings were fixed to their actual parameters for Vina docking 

and were not specified. The substance with the lowest binding score is considered the potential compound. 

The docking results were evaluated with the Discovery Studio 2019 application. 

Statistical Analysis 

Data are presented as mean ± standard error (SEM). All variables were analyzed for statistics by one-

way ANOVA subsequently by Tukey’s post-hoc comparison test. P < 0.05 was considered statistically sig-

nificant. 

Results and Discussion 

Physical Data and Solubility 

Table 1 displays the physio-chemical properties and solubility of the ligand (L1) and its complexes  

(1‒5). Solubility experiments indicate that each of the ligand (L1) and the metal complexes (1‒5) exhibit 

higher solubility in aprotic solvents as opposed to protic solvents. 

T a b l e  1  

Physical data and solubility of the metal complexes (1‒5) and ligand (L1) 

Compound Colour 
Melting 

point (oC) 

Solubility 

Chloroform Water DMSO Ethanol 

Ligand (L1) Yellow 164 Sparingly soluble Insoluble Soluble Soluble 

Copper complex (1) Blue 186 Insoluble Insoluble Soluble Insoluble 

Nickel complex (2) Green 194 Insoluble Insoluble Soluble Sparingly soluble 

Cobalt complex (3) Pale brown 206 Insoluble Insoluble Soluble Insoluble 

Chromium complex (4) Dark brown 182 Partially soluble Insoluble Soluble Insoluble 

Manganese complex (5) Black 234 Insoluble Insoluble Soluble Insoluble 

 

Spectral Data of Ligand (L1) 

(2R,9R)-2-((S)-((2-aminoethyl)amino)(2-hydroxyphenyl)methyl)-6-hydroxy-9-phenyl-2,3,4,9-tetrahydro-

1H-xanthen-1-one (L1) 

Yellow solid; Mw: 456.53; mf: C28H28N2O4; mp: 165 °C; IR (cm–1, KBr) νmax: 3420 (–OH), 3230  

(–NH), 1640 (–C=O), 1230 (–C–N–C); 1H NMR (300 MHz, CDCl3) δ 10.38 (2H, s, OH), 8.08 (1H, s, NH), 

7.12–6.90 (4H, m, Ph–OH), 7.33–7.23 (5H, m, Ar–H), 6.89–6.19 (3H, m, Ph–OH), 6.25 (2H, s, NH2), 4.74 

(1H, s, –CH–Ph), 4.12 (1H, d, J = 1.7 Hz, CH-Ph), 2.96–1.27 (5H, m, CHD), 2.77 (2H, t, J = 2.8 Hz, –CH2), 

2.61 (2H, t, J = 2.8 Hz, –CH2); 13C NMR (300 MHz, CDCl3) δ 198.6 (1C, C=O), 164.8 (1C, -C=C), 162.9, 

154.5, 130.3, 112.9, 110.6, 100.1 (6C, Ar ring), 147.6, 129.2, 128.2, 126.2 (6C, Ph ring), 155.2, 127.7, 127.3, 

121.1, 115.7 (6C, Ph ring), 109.7 (1C, –C=C), 57.0 (1C, –C–C–Ph), 51.1 (1C, –C–NH), 48.9 (1C, –CH2–

NH), 41.3 (1C, –CH2–NH2), 39.9 (1C, –CH–Ar), 26.3 (1C, CH2), 12.6 (1C, CH2); EI-MS: m/z 457.21 

(M+, 30 %); Elemental studies: Anal. Calcd (Found): C, 73.66 (73.62); H, 6.18 (6.20); N, 6.14 (6.16) %. 

Magnetic and Conductivity Properties 

The solubility of the newly synthesised metal complex was assessed in several solvents. The molar 

conductivity in DMSO was determined by utilising a cell constant that was standardised towards a 0.1 M 

KCl solution. The measurement was performed using the Equiptronics electronic conductivity meter (Model 

EQ-660). The complexes’ neutral (non-electrolytic) character was confirmed by assessing the conductivity of 
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a 10–3 M solutions for every complex in DMSO. The mixed ligand complexes (1‒5) exhibited a molar con-

ductivity of 18–28 Ω–1mol–1cm2. The conductivity studies revealed that the chloride ions form complexes 

with metal ions, signifying that they act as ligands instead of independent ions. The arrangement of the syn-

thesised complexes may be influenced by the stoichiometric ratios (1:2) and the kinds of electrolytes em-

ployed in the conductivity testing. Table 2 presents the conductivity and magnetic properties of metallic 

complexes (1‒5). 

T a b l e  2  

Conductivity and magnetic properties of metal complexes (1‒5) with ligand (L1) 

S. No Compounds 
Conductivity  

(Ω-1mol-1cm2) 

Magnetic Susceptibility 

(μeff. B.M) 

1. Copper complex (1) 18 2.23 

2. Nickel complex (2) 26 3.54 

3. Cobalt complex (3) 23 5.23 

4. Chromium complex (4) 24 4.60 

5. Manganese complex (5) 28 5.14 

 

NMR Spectral Studies of Ligand (L1) 

In the 1H NMR spectra of the Mannich base ligand (L1) being studied (Fig. S1, a). The methylene pro-

tons associated with the amine hydrogen atoms of the ethylenediamine and salicylaldehyde are observed as a 

peak at 4.74 ppm, while the hydroxyl protons appear at 10.38 ppm. The aromatic hydrogens exhibit a multi-

plet at 7.12–6.90 ppm. The lack of a signal corresponding to the proton of the secondary amine –NH2, which 

was eliminated during the Mannich process, provides more evidence for the creation of the ligand. In the 
13C NMR spectra of the Mannich base ligand (L1) being studied, the peak at 198.6 and 164.8 ppm resemble 

to the –C=O and –C=C atoms of the xanthene group, respectively. The carbon atoms of the aromatic rings 

exhibited peaks at 162.0–100.1 ppm (Fig. S1, b). The appearance of a peak at 39.9 ppm indicates that the –

CH2 moiety is connected to the amine hydrogens of the ethylenediamine and salicylaldehyde. 

Mass Spectral Studies of Ligand (L1) 

The mass spectra of the studied Mannich base ligand (L1) is shown in Figure 4. The mass of lig-

and (L1) was determined to be 456.53 through observation, and this was further validated by mass spectral 

tests, which showed a mass-to-charge ratio (m/z) of 457.23. The molecular ion peak was detected at a m/z of 

380.44. The other fragmentation peaks seen had m/z of 412.03, 291.32, 225.26 and 209.26, accordingly. The 

fragmentation pattern of ligand (L1) was depicted in Figure 5. 

 

 

Figure 4. Mass spectra of ligand (L1) 
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Figure 5. Mass spectral fragmentation types of Ligand (L1) 

IR Spectra 

A notable discovery in the ligand FT-IR spectra (Fig. 6a) displayed a prominent band at 3446 and 

3145 cm–1, which can be ascribed to the vOH and the NH amine molecule [56, 57]. The N–H and O–H bands 

exhibited a shift towards lower frequency in all of the complexes (Figs 6b–f), demonstrating that the hydrox-

yl oxygen and amine nitrogen were tangled in coordination with the metal ions. The formation of metal 

complexes (1‒5) is indicated by the emergence of a distinct peak at a wavelength of 760–752 cm–1, which re-

sembles to the M–O bond [58]. The M–Cl bond is shown by the emergence of a distinct peak in the spectral 

array of 546–514 cm–1. Table 3 presents the IR spectral information for ligand L1 and complexes 1–5. 

T a b l e  3  

FT-IR studies of complexes (1-5) and the ligand (L1) 

Compound 
IR stretching frequency (cm-1) 

–OH –NH M–O M–Cl 

Ligand (L1) 3446 3145 – – 

Copper complex (1) 3423 2938 760 514 

Nickel complex (2) 3478 3062 756 546 

Cobalt complex (3) 3437 3058 752 542 

Chromium complex (4) 3427 2939 756 523 

Manganese complex (5) 3441 2940 752 528 

 

 

Figure 6. FT-IR spectra of (a) Ligand L1 (b) Copper complex 1 (c) Nickel complex 2 (d) Cobalt complex 3 (e) Chromi-

um complex 4 (f) Manganese complex 5 
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UV-Visible studies 

The UV-Vis spectra of ligand (L1) displayed two absorption maxima in the area of 219 and 266 nm, 

which can be attributed to π−π* and n−π* shifts separately (Fig. 7a). The spectra of the complexes in DMSO 

solution revealed three distinct peaks. The intra-ligand shifts were identified by two distinct bands observed 

at 272–278 nm and 245–258 nm. The presence of the complex was described by the peak observed in the 

343–332 nm area, which is recognized to the ligand-to-metal charge transfer (LMCT) shifts (Figs 7b-f). 

 

 

Figure 7. UV-Vis spectra of (a) Ligand L1 (b) Copper complex 1 (c) Nickel complex 2  

(d) Cobalt complex 3 (e) Chromium complex 4 (f) Manganese complex 5 

EPR Spectra 

EPR spectrum study can provide insights on the formation of ligand-metal bonds and the distribution of 

unpaired and paired electrons. Copper (II) complexes exhibit distinct characteristics in coordination chemis-

try, displaying several geometries including square pyramidal, octahedral, square planar, and tetrahedral, 

which can be differentiated by EPR spectra. The EPR parameters g┴, gavg, g║, and G are used to determine 

whether a chemical has an octahedral or tetrahedral structure. The occurrence of an unpaired electron in the 

dx
2
-y

2 orbital is confirmed by the following criterion: the parallel g-value (g║) is larger than the perpendicular 

g-value (g┴), which is more than 2.0023. The g║ and g┴ values for the copper complex were measured to be 

2.1465 and 2.0253, individually. The covalent character was denoted by a g║ value less than 2.3 and anionic 

character is represented by a g║ value greater than 2.3. It is evident that the g║ value (2.1465) is less than 2.3, 

suggesting that the molecule is covalent. Hathaway states that G values below four suggest a substantial in-

teraction towards metal centres, while G values above four designate a minimum transfer of charge. In this 

example, the G value is 11.45, indicating that the charge transfer is minimum. The Cu(II) complex has dis-

torted octahedral geometry, as indicated by its EPR properties. The EPR spectra of copper complex (1) are 

shown in Figure 8. 

 

 

Figure 8. EPR spectra of copper complex 1 
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Antibacterial Effect 

The synthesised ligand (L1) and complexes (1‒5) were evaluated for antibacterial properties. The lig-

and (L1) exhibited lower activity in comparison to the equivalent complexes (1‒5). The examination was 

conducted within a regulated setting. Among the series of compounds (1‒5), only complex 1 exhibited sig-

nificant action (MIC = 2 mg/mL) towards S. aureus. The chromium complex 4 exhibited more activity to-

wards K. pneumoniae compared to the control Ciprofloxacin, as seen by its lower MIC value of 4 mg/mL, in 

contrast to Ciprofloxacin’s MIC value of 8 mg/mL. The cobalt complex 3 had higher activity towards E.coli 

related to the control Ciprofloxacin, as evidenced by its lower MIC value of 4 mg/mL, whereas Ciprofloxa-

cin had a MIC value of 6 mg/mL. Complexes 1 (Cu(II)), 3 (Co(II)), and 4 (Cr(II)) exhibit remarkable activity 

when compared to complexes 1‒5. Janowska et al., reported the synthesis of metal complexes using hetero-

cyclic Mannich base ligand and its excellent antibacterial action [59]. The outcomes are presented in Table 4 

and Figure 9. 

T a b l e  4  

Antibacterial effect of ligand (L1) and Complexes (1‒5)  

Compounds 
MIC in mg/mL 

K. pneumaniae S. aureus P. aeruginosa E. coli 

L1 16 32 32 16 

1 12 2 8 10 

2 28 8 8 8 

3 14 10 4 4 

4 4 6 4 12 

5 16 12 4 8 

Ciprofloxacin 8 4 2 6 

 

 

Figure 9. Antibacterial action of copper complex 1 in (a) K. pneumaniae, (b) S. aureus, (c) E. coli 

Antifungal Activity 

The study examined the antifungal effect of the obtained ligand (L1) and its complexes (1‒5). Com-

pared to similar complexes, the ligand (L1) exhibited low activity (1‒5). The complex 1 in the sequence (1-

5) had significant activity specifically towards C. albicans, having MIC of 4 mg/mL. The nickel complex 2 

exhibited higher activity towards C. neoformans compared to the normal Clotrimazole. The MIC of the nick-

el complex 2 was 2 mg/mL, whereas the MIC of Clotrimazole was 4 mg/mL. The cobalt complex 3 exhibited 

a lower MIC of 8 mg/mL against A. niger compared to the normal Clotrimazole, which had an MIC of 

12 mg/mL. Complex 1 (Cu II), complex 2 (Ni II), and complex 3 (Co II) exhibit significant activity in com-

parison to complexes (1‒5). The antibacterial efficacy of the complexes is ascribed to the existence of het-

erorings and heteroatoms [60]. The antibacterial efficacy of the metal complexes tends to be superior to that 

of the ligand alone. This results from the extensive delocalization of the ligand’s electronic orbitals through-

out the metal complexes, hence diminishing the metal’s polarity. This, in turn, enhances the lipophilicity of 

the complex, which ultimately leads to the occlusion of active binding sites of microbial enzymes [61]. The 

findings are summarised in Table 5 and Figure 10. 
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T a b l e  5  

Antifungal effect of ligand (L1) and complexes (1‒5) 

Compounds 
MIC in mg/mL 

C. albicans C. neoformans M. audouinii A. niger 

L1 14 26 16 10 

1 04 08 12 16 

2 12 02 10 24 

3 10 16 12 08 

4 12 11 10 14 

5 14 11 08 15 

Clotrimazole 08 04 10 12 

 

 

Figure 10. Antifungal action of (a) cobalt complex, (b) chromium complex, (c) Ligand L1,  

(d) copper complex, (e) cobalt complex, (f) chromium complex 

Docking Studies 

Docking studies were performed to have a deeper understanding of the potential mechanisms of biolog-

ical processes. The anti-fungal protein mevalonate-5-diphosphatedecarboxylase (PDB ID: 1FI4) [62] which 

is accountable for isoprenoid/sterol production and the E. coli topoisomerase II DNA gyrase B (PDB ID: 

1KZN) [63] were selected as protein targets for assessing antimicrobial action towards these species. The 

ligand L1, together with complexes (1‒5) and the control substances Clotrimazole and Ciprofloxacin [64], 

were analysed for their docking interactions with receptors 1FI4 and 1KZN employing the Autodock Vina 

software. The complexes (1‒5) exhibit higher binding affinities (–7.9, –6.2, –7.8, –7.7, –6.8 kcal/mol) com-

pared to ligand L1 (binding affinity: –5.3 kcal/mol) and control Ciprofloxacin (binding affinity:  

–6.0 kcal/mol) in complex with the 1KZN receptor. Hydrogen bonding significantly contributes to the relia-

bility of protein-ligand interaction. The ideal bond length amongst the hydrogen-acceptor and hydrogen-

donor atoms is less than 3.5 Å [65]. The hydrogen bond lengths between ligand L1, complexes (1‒5), and 

control Ciprofloxacin were all below 3.5 Å in their respective proteins, which exhibited particularly high hy-

drogen bonding. The ligand L1 establishes four hydrogen bonds with the protein 1KZN. The amino acids 

Glu42 (bond length: 2.90 Å), Asn46 (bond lengths: 2.43 and 2.50 Å), and Arg136 (bond length: 2.56 Å) par-

ticipated in hydrogen bonding contacts. Hydrophobic contacts were mediated by the amino acids Glu50, 

Arg76, Gly77, Ile78, Pro79, Gly119, and Val120. Complex 3 establishes two Hydrogen bonds with the pro-
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tein 1KZN. The amino acid residue Arg76 participated in a hydrogen bonding interaction, with bond lengths 

of 2.20 and 3.04 Å. Hydrophobic interactions were facilitated by the amino acids Asp49, Glu50, Ala53, and 

His95. Ciprofloxacin failed to create any hydrogen bonds with the protein 1KZN. Hydrophobic interactions 

occurred between each of the amino acids Asn46, Ala47, Glu50, Asp73, Ile78, and Ile90. Figures 11a‒c il-

lustrate the hydrophobic and hydrogen bonding relations between amino acids in the ligand L1, copper com-

plex (1), Ciprofloxacin and 1KZN receptor. Figures S2‒S5 illustrate the hydrophobic and hydrogen bonding 

relations between amino acids in the complexes (2‒5) and 1KZN receptor. The complexes (1‒5) exhibit 

higher binding affinities (–8.8, –8.0, –8.3, –7.0, –7.4 kcal/mol) compared to ligand L1 (binding affinity:               

–6.2 kcal/mol) and control Clotrimazole with a binding affinity of (–6.7 kcal/mol) in the 1FI4 receptor, cor-

respondingly. The ligand L1 establishes six hydrogen bonds with the protein 1FI4. The amino acids Asn13, 

Ala119, Arg158, Asp201, Val206, and Ser208 were implicated in hydrogen bonding interactions, with bond 

lengths of 2.72 Å, 2.48 Å, 2.44 Å, 2.82 Å, 3.00 Å, and 2.05 Å, individually. Hydrophobic contacts were fa-

cilitated by the amino acid residues Ala15 and Asp302. Complex 2 establishes three hydrogen bonds with the 

target protein 1FI4. Hydrogen bonding interactions involving the amino acids Asn110 (with a bond length of 

3.09 Å), Ser208 (with a bond length of 1.67 Å), and Ala303 (with a bond length of 1.82 Å). Hydrophobic 

relations were mediated by the amino acids Ala15, Ala119, Arg158, and Asp302. The control Clotrimazole 

molecule forms a single hydrogen bond with the target protein 1FI4. The amino acid Arg158, with a bond 

length of 5.83 Å, participated in a hydrogen bonding interaction. Hydrophobic contacts were facilitated by 

the amino acids Ala15, Lys18, Tyr19, Trp20, Ala119, Phe260, Asp302, and Ala303. Figures 12a–c depict 

the hydrophobic and hydrogen bonding contacts between amino acids in the 1FI4 protein and ligand L1, 

copper complex (1) and the control Clotrimazole. Figures S6‒S9 depict the hydrophobic and hydrogen bond-

ing contacts between amino acids in the 1FI4 protein and complexes (2‒5). The results indicate that com-

plexes (1‒5) exhibit much higher inhibitory capacity compared to ligand L1 and the control substances Clot-

rimazole and Ciprofloxacin in terms of antifungal and antibacterial properties. The findings were simplified 

and presented in Table 6 and Table 7. 

T a b l e  6  

Docking results of ligand L1 and complexes (1‒5) against protein 1KZN 

Compounds Binding score (kcal/mol) No. of H-bonds H-bonding residues 

L1 –5.3 4 Glu42, Asn46, Arg136 

1 –7.9 0 – 

2 –6.2 0 – 

3 –7.8 2 Arg76 

4 –7.7 0 – 

5 –6.8 0 – 

Ciprofloxacin –6.0 0 – 

 

 

Figure 11. Interactions of ligand L1 (a), copper complex 1 (b), Ciprofloxacin (c) within the binding cavity of 1KZN 
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T a b l e  7  

Docking results of ligand L1 and complexes (1‒5) against protein 1FI4 

Compounds Binding score (kcal/mol) No. of H-bonds H-bonding residues 

L1 -6.2 6 Asn13, Ala119, Arg158, Asp201, Val206, Ser208 

1 -8.8 1 Tyr19 

2 -8.0 3 Asn110, Ser208, Ala303 

3 -8.3 1 Leu17 

4 -7.0 1 Asp302 

5 -7.4 0 - 

Clotrimazole -6.7 1 Arg158 

 

 

Figure 12. Interactions of ligand L1 (a), copper complex 1 (b), Clotrimazole (c) within the binding cavity of 1FI4 

Conclusions 

This study focusses on the coordination chemistry of a Mannich base ligand (2R,9R)-2-((S)-((2-

aminoethyl)amino)(2-hydroxyphenyl)methyl)-6-hydroxy-9-phenyl-2,3,4,9-tetrahydro-1H-xanthen-1-one (LI), 

synthesised through the reaction of xanthene, salicylaldehyde, and ethylenediamine. The Mannich base lig-

and (L1) was used to form metal complexes (1‒ 5) of the [M(L1)2Cl2] type. These complexes were then ana-

lysed using analytical, magnetic, and spectroscopic methods. The Mannich base is a bidentate ligand that 

coordinates with the metal ion over nitrogen atom of ethylenediamine and the oxygen atom of salicylalde-

hyde. The conductivity behaviours indicate that the chloride atoms are bound to the metal atoms as ligands, 

rather than being as free ions. The synthesised complexes (1–5) exhibit the octahedral geometry as shown by 

their electrical and magnetic characteristics. Furthermore, the ligand and metal complexes underwent screen-

ing to evaluate their antibacterial efficacy towards different harmful microorganisms. The metal complexes 

displayed significant antimicrobial properties related to the ligand (L1) and control, as validated by docking 

experiments. The data acquired validate the multi-directional antimicrobial efficacy of the novel Mannich 

base complexes and demonstrate the influence of structural replacement on the activity of this kind of sub-

stances towards various microorganisms. The findings acquired are anticipated to yield significant data for 

additional study of this intriguing group. Pharmacological research focused on discovering novel biologically 

active chemicals is ongoing with a repository of acquired molecules. 
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