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Preparation of Poly(Ethylene Terephthalate) Track-Etched Membranes  

for the Separation of Water-Oil Emulsions 

Rapid industrial growth in the petrochemical, pharmaceutical, metallurgical and food industries, as well as 

stormwater that accumulates pollution from the roadway and the territories of motor transport enterprises, gas 

stations, car washes and other municipal services have led to the formation of a large amount of oily 

wastewater. Oil-containing wastewater is a multicomponent, multiphase water system and, as a rule, is in a 

state stabilized by various factors, which greatly complicates their processing. Pollution of water sources with 

oil-containing compounds leads to negative consequences for both living organisms and human health. 

Therefore, the need to treat oily wastewater is an urgent problem. In this article, poly(ethylene terephthalate) 

track-etched membranes (PET TeMs) with pore diameters of ~ 5.1 µm and pore density of 1∙106 pore/cm2 

were modified by formation of polyelectrolyte complexes of PET TeMs surface with poly(allylamine) 

(PAAm) and tested for oil-water separation by using hexadecane/water (at pH=2) and chloroform/water (at 

pH=2) emulsions. Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), en-

ergy dispersive X-ray (EDX) analysis, contact angle measurements were used for membrane characterization. 

The efficiency of oil-water separation was evaluated by flux measurements. Results showed separation per-

formance of 267 mL/m2·s for hexadecane/water (pH=2) and 100 mL/m2·s for chloroform/water (pH=2) at 

vacuum pressure of 700 mbar. 

Keywords: track-etched membranes, oily wastewater, poly(allylamine), hexadecane, chloroform, 

poly(ethylene terephthalate), water treatment, separation. 

 

Introduction 

At present, due to the growth of industrial production, environmental pollution is significantly increas-

ing, as a result, there is a deterioration in the condition of objects of domestic and drinking water use [1–5]. 

The most common pollution of water bodies (oceans, seas, lakes, rivers, groundwater, glaciers) is oil and its 

products, such as gasoline, kerosene, oils, fuel oil, etc. In water bodies, oil and oil products create various 

forms of pollution, such as oil film floating on the water, oil products dissolved or emulsified in water, heavy 

fractions settled to the bottom, products adsorbed by the bottom soil or the shore of a reservoir. The negative 

consequences of pollution are showed in various mechanisms of exposure and damage to living organisms, 

including humans [6–8]. Contaminated industrial oily wastewater can also form explosive and flammable 

gases and mixtures or toxic substances, therefore, various methods are used to treat and neutralize them [9–

11]. 

Such methods as coagulation [12, 13], flocculation [14, 15], flotation [16, 17], sorption [18], electro-

magnetic separation [19, 20] can be used to solve the problem of wastewater treatment from oil pollution. 

Currently, membrane separation methods (ultrafiltration, reverse and direct osmosis) are the most promising 

for the purification of water-oil emulsions, due to their high energy efficiency, selectivity, and economy [21–

24]. Various types of membranes can be used, while track-etched membranes (TeMs) are poorly understood. 

However, the small thickness, non-tortuosity of pores, extremely narrow pore size distribution, and con-

trolled pore geometry per unit area make them promising for use in the process of separating oil-in-water 

emulsions [25–29]. In addition to the use of TeMs in water filtration, they can be used in microelectronics, 

bio- and nanotechnologies (for example, as a means of delivering medicines), medicine, pharmaceutical, 

food and perfume industries, chemical industry, ecology and other fields [29–31]. 

Polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polypropylene (PP) membranes are mainly 
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used to separate oil-water emulsions, however, the use of polyethylene terephthalate (PET) TeMs has been 

little studied [32–35]. 

Since the surface of PET TeMs has semi-hydrophobic properties, it is necessary to increase 

hydrophilicity for effective separation of water-oil emulsions [36, 37]. Polyallylamine (PAAm) is a hydro-

philic monomer that can be used to separate oil-in-water emulsions. In addition, polyallylamine is available 

and has not been previously studied for surface modification of PET TeMs. For this purpose, the 

hydrophilization of oxidized PET TeMs by polyallylamine was studied in this article. 

Previously, we have shown that PET TeMs modified by photoinitiated graft polymerization of stearyl 

methacrylate [38], as well as by soaking in a trichlorooctylsilane solution [39], performed well in the separa-

tion of oil-water emulsion. In this paper, we studied a simpler and more energy efficient method of modify-

ing PET TeMs to obtain a pH-responsive surface by soaking in a (poly)allylamine (PAAm) solution for use 

in the separation of chloroform/water (pH=2) and hexadecane/water (pH=2) systems in various ratios. 

Experimental 

Materials 

Sodium hydroxide, benzophenone, N’N-dimethylformamide, 2-propanol, poly(allylamine hydrochlo-

ride), methanol, ethanol, chloroform, hexadecane were purchased from Sigma-Aldrich. Deionized water 

(18.2 MΩ) was used in all experiments. 

Preparation of track-etched membranes (TeMs) 

The PET TeMs were prepared as described below. Ion tracks on PET films were generated by irradia-

tion with Kr ions using the accelerator DC-60 (Astana branch of Institute of Nuclear Physics) with an energy 

of 1.75 MeV/nucleon and ion fluences 1·10
6
 ion/cm

2
. Then the membranes were processed by photosensiti-

zation for 30 min on both sides and were chemically treated in 2.2М NaOH solution at certain periods of 

time. After chemical etching in a 2.2 M NaOH solution at 85 °C, membranes with a pore diameter of 

~5.1 µm were obtained. 

Pre-oxidation of PET track-etched membranes in H2O2/UV system 

PET TeMs were oxidized in a solution of 0.3 M H2O2 at pH=3 (HCl). Oxidation was carried out for 

180 min under UV lamps (190W). After the oxidation, samples were washed in deionized water and 

dried [25]. 

Preparation of poly(allylamine) solution 

0.6 g of polyallylamine hydrochloride was neutralized by reaction with 0.224 g of NaOH in 10 ml of 

methanol. The reaction kept for 24 h at 60 °C. Then solution was separated from the precipitate and 40 ml of 

ethanol was added. Then, oxidized PET TeMs were kept in a 6 % poly(allylamine) solution for 6h. After 

that, before determining the contact angle (CA), the samples were additionally kept in a solution of pH=2 

and pH=9 for 30 min. 

Methods of characterization 

For identification of chemical groups before and after modification, FTIR spectra were recorded using 

FTIR spectrometer InfraLUM® FT-08 with an ATR accessory. The measurements were carried out in the 

range from 400 to 4000 cm
-1

, 32 scans with 2 cm
-1

 resolution at a temperature of 21–25 °C. 

The water and hexadecane contact angles were measured by using Digital Microscope with 1000× 

magnification by the sessile drop method at room temperature. Before measuring the contact angle, the sam-

ples were soaked for 30 minutes at a certain value of pH. The average drop volumes of water at different pH 

was 15 μl, the average value of the CA was obtained by measuring the sample in a few different positions. 

Hitachi TM3030 scanning electron microscope with a Bruker XFlash MIN SVE microanalysis system 

at an accelerating voltage of 15 kV was used to study the membrane morphology and elemental composition 

of the surface before and after modification. 

The gas permeability test was used to evaluate the effective pore sizes of the membranes at a pressure 

drop of 20 kPa according to the method described in [40]. 

A burst strength procedure was performed to evaluate the mechanical properties of oxidized and modi-

fied PET TeMs. Burst strength was evaluated at pressure that damages a circular sample of 1 cm
2
 surface 

area. Burst strength is 0.28 MPa for pristine PET TeMs with pore diameter of ~5.1 µm, and there is a slight 

decrease to 0.20 MPa after modification with PAAm. 

Performance of modified membranes in oil-water separation 
The separation of water-oil mixtures with modified PET TeMs was carried out by filtration according to 

the scheme presented in our previous works [38, 39]. 
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The performance of the obtained membranes was tested out as follows. First, the modified PET TeMs 

were kept in a pH=2 solution for 30 minutes. Then, the samples were dried and fixed in a vacuum filtration 

unit. Chloroform and hexadecane at pH=2 were dispersed in a volume of 20 ml in the different ratios (chlo-

roform/water (pH2) = 1:50 and 1:100 (vol.), hexadecane/water (pH2) = 1:50 and 1:100 (vol.)) using an IKA 

T18 digital ULTRA-TURRAX disperser at a speed of ~ 22000 rpm. Next, the mixture was poured into a 

glass funnel, a hose was connected from the IKA VACSTAR Control vacuum pump, setting the desired 

pressure value. Next, the filtration of the mixture was observed by recording the time at which the liquid 

passes through the pores of the membrane.  

The performance (Q) of the filtered water-oil mixture was calculated by Equation (1):  

 
·

V
Q

S T


,
 (1) 

where Q — the performance (ml/s·cm
2
); S — the filtration area of sample (cm

2
); V — the volume of solution 

(ml); T — the filtration time (s). 

The separation efficiency (R, %) was calculated using Equation (2): 

 2

1

100 %
V

R
V

  , (2) 

where V2 — the volume of water collected after separation; V1 — the volume of water in water-in-oil emul-

sion before separation. 

Results and Discussion 

To separate “oil-in-water” type of emulsion, it is necessary to obtain membranes with a surface that can 

pass water and retain an organic medium. With this aim, we proposed a simple method for the formation of a 

polyelectrolyte complex by negatively charged pre-oxidized PET membrane surface contained carboxylic 

and hydroxylic groups and polyallylamine. One part of the amino groups of polyallylamine interacts with the 

membrane surface, and the other part can be ionized by soaking in solutions with acidic pH. For example, 

after soaking in pH=2, NH2 groups are converted into charged NH3
+
 groups, which make the membrane sur-

face hydrophilic, since the charged groups have a dipole. 

Figure 1 shows the contact angle (CA) values for water and hexadecane, measured for oxidized PET 

TeMs and modified PET TeMs-PAAm at different pH value (before measurement, the membranes were 

soaked in water with the appropriate pH). 

 
Contact angle of water and hexadecane  

with oxidized PET TeMs, 

After modification with PAH  

(PET TeMs-PAAm) (6 %), 

pH=7 Hexadecane pH=7 Hexadecane 

 

 

  
44°±4 – 68°±4 13°±5 

    

Contact angle of pH = 2 solution and hexadecane PET 

TeMs-PAAm (6 %), 

Contact angle of pH = 9 solution and hexadecane PET 

TeMs-PAAm (6 %), 

   

pH=2 (HCl) Hexadecane pH=9 (NaOH) Hexadecane 

    
59°±11 29°±5 72°±5 21°±5 

Figure 1 Contact angle of water, hexadecane, solutions pH = 2 and pH = 9  

of the oxidized and modified PET TeMs-PAAm 

As can be seen in Figure 1, the oxidized PET TeMs have water CA of 44°, however, hexadecane im-

mediately passed through the pores of the membranes and this membrane cannot be used for water-oil sepa-

ration, while PET TeMs-PAAm at pH=7 showed water CA of 68° and hexadecane of 13°, at pH=2 water CA 

is 59° and hexadecane of 29°. In this case, a drop of water passes through the pores of the membranes, while 
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a drop of hexadecane does not pass. This indicates that such membranes can be used to separate water-oil 

mixtures. 

The FTIR spectra of the pristine PET TeMs contain absorption peaks at 2972 cm
-1

 (aromatic C-H), 

2910 cm
-1

 (aliphatic C-H), 1716 cm
-1

 (C=O), 1471 cm
-1

 (CH2 vibr.), 1410 cm
-1

 (CH vibr.), 1341 cm
-1

 (CH2), 

1246 cm
-1

 (stretching vibrations of C(O)-O bonds), 1019 cm
-1

 (CCC ring), 970 cm
-1

 (O-CH2) [41]. The pres-

ence of polyallylamine on the surface causes the appearance of peaks at ~2924 cm
-1

 and ~980 cm
-1

 related to 

the –CH group, at ~3400 cm
-1

 and 1624 cm
-1

 related to the amino groups –NH2 and –NH (Fig. 2). 

 

 

 

Figure 2. FTIR spectra of oxidized and modified PET TeMs-PAAm in the ranges of:  

550–1800 cm
-1

 (a), 2500–3500 cm
-1

 (b), 900–1000 cm
-1

 (c), 3000–3550 cm
-1 

(d), 1500–1700 cm
-1 

(e) 

EDX spectra of the surface of modified PET TeMs-PAAm are shown in Figure 3. 

 

  

600 800 1000 1200 1400 1600 1800

C-O

O-CH2

C-O-C
C-O

C-C vibr.

A
b

so
rb

an
ce

 [
a.

u
]

Wavenumber, cm-1

 PAAm pristine

 PET TeMs_PAAm 6%

 PET TeMs_ox

C=O
C-(O)-O

O-CH

(a)

2500 3000 3500

A
b
so

rb
an

ce
 [

a.
u
]

Wavenumber, cm-1

 PAAm pristine

 PET TeMs_PAAm

 PET TeMs_ox

-CH

(b)

900 930 960 990

A
b

so
rb

an
ce

 [
a.

u
]

Wavenumber, cm-1

 PAAm pristine

 PET TeMs_PAAm

 PET TeMs_ox

-CH

(c)

3000 3500

A
b
so

rb
an

ce
 [

a.
u
]

Wavenumber, cm-1

 PAAm pristine

 PET TeMs_PAAm

 PET TeMs_ox

-NH

(d)

1500 1600 1700

A
b

so
rb

an
ce

 [
a.

u
]

Wavenumber, cm-1

 PAAm pristine

 PET TeMs_PAAm

 PET TeMs_ox

-NH

(e)



Preparation of Poly(Ethylene Terephthalate) Track-Etched Membranes … 

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 135 

  

Figure 3. EDX spectra of modified PET TeMs-PAAm (6 %) 

Figure 3 shows, that there is a uniform coverage of nitrogen (from PAAm) on the membrane surface. 

The presence of carbon and oxygen on the surface refers to PET TeMs. It should be noted that the gold con-

tent is present due to vacuum deposition prior to SEM analysis. Elemental analysis showed that the average 

content of nitrogen was ~6.4 %. 

Table shows that the effective pore diameter decreases slightly after modification. This is probably due 

to the formation of a polyallylamine layer on the surface and inner pore walls of PET TeMs. 

T a b l e  

Characteristics of the pristine (oxidized) and modified PET TeMs-PAAm 

Sample CA (pH=2), ° CA (hexadecane), ° Effective pore diameter, nm 

PET TeMs ox. 44°±4 - 5061±19 

PET TeMs-PAAm (6 %) 68°±4 13°±5 4862±16 

PET TeMs-PAAm (6 %) 

(after soaking at pH = 2) 
59°±11 29°±5 4810±9 

PET TeMs-PAAm (6 %) 

(after soaking at pH = 9) 
72°±5 20°±5 4806±15 

 

The results of performance of modified PET TeMs-PAAm using chloroform-water (pH=2) solu-

tion (1:50), hexadecane-water (pH=2; 1:100) emulsions are shown in Figure 4. Since the hexade-

cane/water (pH=2) emulsion is more viscous, their ratio was greater than when using a mixture of chloro-

form/water (pH=2; 1:100 to 1:50). This resulted in greater performance of the hexadecane/water (pH=2) 

emulsion compared to chloroform/water (pH=2) at different pressures. At a pressure of 700 mbar, the aver-

age performance of chloroform/water (pH=2) was 100 ml/s·cm
2
, and the mixture of hexade-

cane/water (pH=2) was 267 ml/s·cm
2
. The performance was studied over 10 cycles, the surface stability of 

the modified layer of the membrane was observed. The degree of separation in almost all cases was more 

than 98 % and only slight decrease in flux was detected. Moreover, CA was controlled after each cycle of 

separation, which showed changes in CA within the standard error. Thus, a simple and effective method for 

the modification of PET TeMs with a pH-responsive surface has been developed, which can be successfully 

applied to separate oil-water emulsions. 

 

  

Figure 4. The fluxes of modified PET TeMs-PAAm with pore density 1∙10
6
 for chlorofom/pH=2 solution (1:50)  

and hexadecane/pH=2 solution (1:100) oil-water emulsions after each cycle at different pressure 
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Conclusions 

In this study, we presented the results of modification of PET TeMs by soaking in poly(allylamine) so-

lution. The effect of pH solutions and monomer concentrations providing the highest contact angle for hexa-

decane was studied. PET TeMs with pore diameters 5.1 µm (1∙10
6 

pore density) were tested in oil-water 

emulsion separation by using hexadecane/water (pH=2; 1:100) and chloroform/water (pH=2; 1:50) as a 

model emulsions. Membranes showed that the average performance of chloroform/water (pH=2) was 

100 ml/s·cm
2
, and the mixture of hexadecane/water (pH=2) was 267 ml/s·cm

2
. 
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