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Track-Etched Membranes for Gold Nanowire SERS Substrates

In this study, a novel and reliable method for the production of bimetallic Ni-Au segmented nanowires by
template-assisted electrochemical deposition was developed. Track-etched membranes were used as tem-
plates for the synthesis of gold nanowires with a diameter of about 100 nm by electrochemical deposition. To
enhance structural stability, a modified approach was proposed, wherein gold nanowires were grown on nick-
el nanowire cores instead of being deposited directly onto the copper layer, as is commonly practiced. The
morphology and composition of the resulting nanostructures were characterized by scanning electron micros-
copy (SEM) combined with energy-dispersive X-ray analysis (EDX). Elemental mapping analysis was per-
formed to visualize the spatial distribution of constituent metals within the nanowires, revealing a well-
defined segmented architecture: copper was localized at the base, nickel occupied the central region, and gold
was selectively deposited on the top surface. The Surface-Enhanced Raman Scattering (SERS) activity of the
substrates was evaluated using Rhodamine 6G at the concentration of 10~ M, confirming their effectiveness
for signal enhancement. The developed approach allows precise control of the nanostructures morphology
and composition by separating the deposition stages for nickel and gold segments. By eliminating direct con-
tact between gold and copper layers, this strategy effectively suppresses intermetallic diffusion, thereby en-
hancing the structural stability of the resulting bimetallic nanowires.

Keywords: track-etched membrane, template synthesis, gold nanowires, copper layer, SERS substrates, elec-
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Introduction

Development of stable and reproducible SERS substrates is critical for rapid and reliable detection of
organic compounds in field conditions [1]. While silver-based substrates provide higher signal enhancement
due to superior plasmonic response in the visible region, gold substrates are preferred for practical applica-
tions due to their better chemical stability and biocompatibility [2]. Au inertness under ambient conditions
prevents oxidation and sulfidation. That preserves its surface integrity and plasmonic properties over time,
thereby ensuring consistent SERS performance and signal reproducibility.

Conventional methods of SERS substrates fabrication include chemical reduction and physical deposi-
tion techniques, which are commonly employed due to their simplicity and scalability [3]. However, these
methods often lack precise control over the size, shape, and spatial distribution of gold nanostructures, lead-
ing to inhomogeneous surface morphologies and inconsistent signal enhancement across the substrate. To
address these limitations and enable the development of reproducible and reliable SERS platforms, template-
assisted synthesis in porous materials has emerged as a promising approach. Specifically, porous alumina
oxide and track-etched membranes allow a controlled fabrication of ordered gold nanowire arrays with well-
defined dimensions and improved uniformity of a SERS signal [4-6].

Due to the optical transparency of anodic aluminum oxide (AAO) in the visible spectral range it serves
as a suitable template for the direct fabrication and in situ characterization of gold nanostructures. Study [4]
demonstrates that variations in the size and aspect ratio of gold nanoparticles synthesized within AAO pores
result in a pronounced color shift of the template, attributed to the localized surface plasmon resonance. Fur-
thermore, research [5] reported the emergence of a magneto-optical effect in hybrid gold—nickel nanostruc-
tures, suggesting their potential for applications in optoelectronic and spintronic devices.

In comparison to AAO, polymer track-etched membranes fabricated via ion-track technology offer
greater versatility and control over pore morphology. These polymer membranes allow precise tailoring of
the pore geometry, including cylindrical, conical, and other predefined shapes [7, 8]. Moreover, this method
enables forming a calibrated metallic nanostructure array, including multi-material and composite ones [9].
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An additional advantage is the ability to fabricate three-dimensional nanowire networks, which can be inte-
grated as polymer-based composites [10] or employed as self-supporting porous metallic meshes [6, 11].
Such a structural flexibility makes track-etched membranes a promising platform for the development of re-
producible and functionally tailored SERS substrates.

Several studies have reported the fabrication of gold nanostructures as SERS-active substrates using
track-etched membranes as templates [12, 13]. However, a key limitation of such approaches lies in the us-
age of copper as a conductive base layer which is unsuitable for direct gold electrodeposition due to the in-
terdiffusion between the two metals, leading to structural and chemical instability [14, 15].

A method for fabricating hollow conical gold nanostructures was demonstrated, exhibiting strong SERS
performance with detection of Rhodamine 6G at concentrations as low as 108 M [16]. But, a long-term sta-
bility of the resulting substrates was compromised by the choice of copper as a base material, which facili-
tates interfacial diffusion and degradation over time.

To address this issue, alternative strategies have been proposed. One common solution involves a depo-
sition of a thin metallic coating, not copper, onto the polymer template prior to the electrochemical growth.
In [17], electrodeposition from sulfide-based electrolytes was shown to yield predominantly polycrystalline
gold nanoparticles, whereas cyanide-based electrolytes favored the formation of (110)-textured monocrystal-
line structures. The process included sputtering a thin gold film onto a polycarbonate template, followed by
galvanic strengthening with a copper layer. Also, gold sputtering is described in the work [18].

An alternative approach was proposed in [19], where a mercury drop was used as a liquid cathode base,
eliminating the need for any intermediate metal coating. This method enables a synthesis of stable gold nan-
owires within polymer templates without diffusion-related degradation.

In this work, we demonstrated a structurally stable alternative through the electrochemical growth of
gold onto pre-formed nickel nanowire cores, effectively preventing interfacial diffusion and phase transfor-
mation of gold. The resulting bimetallic Ni-Au segmented nanowires exhibit both chemical robustness and
pronounced SERS activity, as evidenced by consistent signal enhancement of Rhodamine 6G at concentra-
tions as low as 10~ M. This approach enables the fabrication of scalable, uniform, and functionally reliable
SERS substrates, suitable for high-performance sensing applications where stability, reproducibility, and en-
vironmental resistance are critical.

Experimental

Polyethylene terephthalate (PET) track-etched membranes (TMs) with a pore diameter of 100 nm were
selected as a templates for the synthesis. The membranes were fabricated at the Flerov Laboratory of Nuclear
Reactions, Joint Institute for Nuclear Research (JINR, Dubna). The film thickness was 12 um for two types
of the TMs with intersecting and parallel pore systems. The surface density of the pore was 1.2x10° cm™,

Nickel deposition was carried out using a Watts-type electrolyte with the following composition: Ni-
SO4x7 HO — 300 g/1; NiCl,x6 H,O — 45 g/L; H3BO; boric acid — 38 g/L.. The pH of the nickel electro-
lyte was 4. Electrodeposition was performed at an electrolyte temperature of 60 °C, using a nickel anode
grade NPA1 (purity above 99 %).

Gold deposition was conducted using a commercial gold plating electrolyte. The pH of the solution was
maintained at 9, and the deposition temperature was set to 70 °C. A gold wire was used as an anode.

Thermally stable electrochemical cells for deposition were fabricated from polycarbonate using 3D
printing [20].

The obtained nanostructures were characterized using a JEOL JSM-6000 plus electron microscope in
secondary and backscattered electron scanning modes. The accelerating voltage was 15 kV. The survey was
carried out using a special holder to set the samples at different angles. Elemental analysis was performed
using an attached EDX spectroscopy system.

Raman and surface-enhanced Raman scattering (SERS) spectra of Rhodamine 6G (R6G) at a concentra-
tion of 10* M were recorded on aluminum foil and SERS substrates based on Ni—Au segmented nanowires.
The measurements were carried out using a Horiba LabRam Evolution confocal spectrometer equipped with
a single-mode continuous-wave (CW) laser operating at 633 nm, with a maximum output power of 100 mW.
A 100x objective lens was used to focus the laser beam, resulting in a spot size of approximately 1 pm in
diameter.

For conventional Raman measurements on aluminum foil, the laser power was attenuated to 1 mW to
minimize thermal effects and photodegradation of the analyte. In SERS experiments, two excitation power
levels — 0.1 mW and 1 mW — were employed to assess signal dependence on laser intensity and to ensure
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reliable detection under low-power conditions. Each spectrum was obtained by averaging five individual ac-
quisitions, with an integration time of 20 seconds per scan, to enhance spectral reproducibility and signal-to-
noise ratio.

Spectra were additionally recorded from rhodamine deposited on nickel nanowires at laser powers of
I mW and 5 mW in order to demonstrate the absence of any significant signal enhancement, confirming the
lack of SERS activity in nickel-based structures.

Results and Discussion

Growth and Deposition Curves

Bimetallic Ni-Au segmented nanowires were grown in several stages (Figure 1). In the first step, a
100 nm thick copper layer was sputtered onto the surface of the track-etched membrane to provide a conduc-
tive base. Subsequently, an additional copper layer with a thickness of 3—5 um was electrodeposited onto the
initial sputtered layer (Figure 15). This step was carried out to mechanically improve the copper layer and
ensure its structural integrity during further processing. In the second step, nickel was deposited into the
pores of the track-etched membrane (Figure 1¢). The deposition was performed in a galvanostatic mode at a
current density of 2 mA/cm?. The deposition time was chosen such that the pores were filled approximately
halfway.

The deposition rate of nickel nanoparticles is 225 nm/min.

a b c d e
- - - ~— - LS — - - s —— - -> . - . 7 ) 7 )
- - - - . b P - - #‘ 2 "’
N B |
o‘ l ' ]
N RN N S .- o

Figure 1. Stages of bimetallic Ni—Au segmented nanowire deposition

The degree of pore filling can be determined experimentally, taking into account the time required for
complete pore filling, or theoretically based on the total charge passed through the electrochemical cell.

Examples of volts of time dependencies removed during nickel and gold deposition are shown in Fig-
ure 2.
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Figure 2. Changes in the electrochemical cell potential during metal deposition into 100 nm pores

of track-etch membranes at a fixed current density of 2 mA/cm?* a) complete pore filling with nickel;
b) partial pore filling with gold
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At the third step, a gold segment was electrodeposited onto the nickel nanowires core (Figure 1d). The
deposition was carried out in a galvanostatic mode at a current density of 2 mA/cm? The deposition time
varied between 500 and 2000 seconds. Figure 25 presents the deposition curve for the gold segment. The
deposition rate of gold nanoparticles is 60 nm/min.

After deposition of the gold segments, the polymer template was dissolved in a concentrated alkaline
solution (6M NaOH) at 80 °C for 2 hours (Figure le).

Following membrane dissolution, the resulting nanostructures were characterized using electron mi-
croscopy techniques.

Scanning Electron Microscopy (SEM) Analysis

Scanning electron microscopy (SEM) analysis revealed that the synthesized nanowires had an average
total length of approximately 6.5 um and a diameter of 100 nm (Figure 4). Backscattered electron scanning
clearly showed distinct contrast along the nanowire axis, indicating the presence of multiple metallic seg-
ments. The nickel segment was measured to be approximately 4.5 pm in length, while the gold segment is

about 2 um.

5pm
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Figure 4. SEM images of the substrate with nanowires in secondary electron (SED) mode
and backscattered electron (BED-C) mode

Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of copper, nickel, and
gold along the nanowire structure (Figure 5). Furthermore, elemental mapping was performed to visualize
the spatial distribution of constituent metals (Figure 6). The results demonstrate a well-defined architecture,
with copper localized at the base, nickel in the central segment, and gold selectively deposited at the top sur-

face of the nanowires.
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Figure 5. EDX analysis results for the bimetallic Ni-Au segmented nanowires
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Figure 6. Elemental mapping of the nanowires showing spatial distribution
of copper (green), nickel (red), and gold (blue)

Raman Scattering

Raman and SERS measurements of Rhodamine 6G (R6G) at a concentration of 10 M were performed
on aluminum foil and Ni—Au segmented nanowire-based substrates. The results are summarized in Figure 7.

Figure 7a presents Raman spectra obtained from a dried droplet of R6G on aluminum foil. Clear vibra-
tional features are observed only at the droplet edge, where the analyte is concentrated due to the coffee-ring
effect, but signal still is dominated by a strong photoluminescence background. In contrast, no distinct spec-
tral features are detected at the center of the droplet. These findings highlight the limitations of conventional
Raman spectroscopy for detection that analyte concentration without plasmonic enhancement. All observed
Raman bands are consistent with previously reported data for R6G known in literature.

As shown in Figure 7b, Raman spectra collected from R6G adsorbed on nickel nanowires exhibit no
signal enhancement. This confirms that nickel nanostructures alone do not provide measurable SERS activity
under the given experimental conditions.

In contrast, Figure 7c demonstrates a substantial improvement in spectral quality when using Ni—Au
segmented nanowires as SERS-active substrates. The photoluminescence background is effectively sup-
pressed, and the characteristic Raman peaks of R6G become clearly resolved. Spectra were acquired at two
different laser powers — 0.1 mW and 1 mW — to evaluate the sensitivity and feasibility of low-power oper-
ation. Even at the reduced power level, the Raman signal remains well above the noise floor, indicating high
substrate sensitivity. This feature is particularly relevant for practical sensing applications, including portable
or field-deployable devices where low-power excitation is often required.

The overall performance of the Ni—Au segmented nanowire substrates suggest potential for the detec-
tion of even lower analyte concentrations and for the analysis of fluorescent compounds, which are typically
challenging to detect using conventional Raman spectroscopy.
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Figure 7. a — Raman spectra of R6G (10~ M) on aluminum foil, showing signal variation at the droplet edge
(coffee-ring region) and center. b — Raman spectrum of R6G (10* M) on Ni NWs.
¢ — Comparison of R6G spectra on Al foil and Ni—Au segmented nanowires

Conclusions

In this work, a novel and reliable approach for the fabrication of bimetallic Ni-Au segmented nan-
owires via template-assisted electrochemical deposition was developed. The proposed method enables pre-
cise control over the morphology and composition of the nanostructures by separating the deposition stages
for nickel and gold segments. This strategy effectively avoids direct contact between gold and copper layers,
thereby preventing intermetallic diffusion and significantly improving structural stability.

The resulting Ni-Au segmented nanowires demonstrated strong SERS activity, allowing for the sensi-
tive detection of 10* M Rhodamine 6G. Notably, SERS signals were obtained even at very low laser power
(0.1 mW), highlighting the potential of these substrates for portable and field-deployable sensing applica-
tions. This study demonstrates that the combination of controlled template-based synthesis and bimetallic
design offers a promising route toward the development of stable, reproducible, and highly sensitive SERS
substrates suitable for practical analytical tasks, including trace-level detection of organic compounds with
inherent fluorescence.
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