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The Role of Surface Hydrophobization of Mild Steel  

by Some Triazole Derivatives in Acidic Medium 

Triazole derivatives (4,5-diphenyl-4H-1,2,4-triazole-3-thiol (4,5-PhTAT) and 3,4-diphenyl-5-(prop-2-yn-1-

ylthio)-4H-1,2,4-triazole (3,4-PhPTTA) have been researched as corrosion inhibitors for mild steel in 0.1 N 

sulfuric acid solution. Electrochemical methods were used to estimate the corrosion rate and the inhibition ef-

ficiency: potentiodynamic polarization and impedance spectroscopy. The semi-empirical GFN2-xTB method, 

taking into account their implicit solvation in water using the ALPB method in the XTB program have been 

used for Geometry optimization of the structures of individual compounds and protomers in solution. Quan-

tum chemical calculations suppose predominantly protonated structure for 3,4-PHPTTA molecules and neu-

tral form of molecules for 4,5-PhTAT. According to electrochemical measurements the best inhibition effi-

ciency for 4,5-PhTAT achieved at 50 mg∙l-1and 200 mg∙l-1 for 3,4-PhPTTA. 4,5-PhTAT and 3,4-PHPTTA are 

the mix-type inhibitors in 0.1 N sulfuric acid solution, but rate of cathodic process is decreased more than an-

odic. Contact angle measurements were carried out by the sessile drop method. Hydrophobization of the steel 

surface occurs in the blank acid and inhibited solution. The contact angle measurements by two test liquids 

(water and diethylene glycol) after corrosion with presents 4,5-Pstat and 3,4-PHPTTA show that the protec-

tive film formed in inhibited solution. 

Keywords: corrosion, inhibitor, triazoles, polarization curves, surface tension, impedance spectroscopy, quan-

tum chemical calculations, sessile drop method. 

 

Introduction 

Corrosion is a widely studied field of science. The use of inhibitors to control the corrosion in acid me-

dium was found to have widespread applications [1–4]. The corrosion inhibition of steel in acidic medium by 

organic inhibitors was studied in considerable detail. Triazoles derivatives are N-heterocyclic compounds 

containing a five-member ring with three nitrogen atoms. Their molecules play important roles in biology 

due to their extensive biological interactions [4] and in chemistry due to their ability to inhibit corrosion of 

metals and alloys [1–3]. Today heterocycles inhibitors leading to minimize the corrosion process in met-

als [5–7]. The use of heterocycles inhibitors is of significant interest because of their economical synthesis 

methods and high protection efficiency [8, 9]. Among them, triazole derivatives have been researched as ef-

fective corrosion inhibitors for steel in acidic media [6, 7]. The inhibition efficiency depends on many fac-

tors: the nature of the metal surface, the inhibitor molecular structure — the number of adsorption active cen-

ters in the molecule, the charge density, the molecular size, and the ability of this molecule to interact with a 

metal surface. In order to understand action mechanisms of corrosion inhibitors, there are numerous experi-

mental (electrochemical) [8, 9] and theoretical (quantum chemical) [10, 11] studies. One of the key ap-

proaches is the film theory of inhibitors [12, 13], according to the inhibition efficiency is due to the for-

mation of a hydrophobic film on the metal surface. This film can be investigated by the sessile drop meth-

od [12–18]. The energy of the surface changes when the inhibitor film is formed and some adsorption centers 

appear and disappear on it. This can be measured by the method of steel surface contact angles with tested 

liquids and calculated the components (polar and dispersion) of the free surface energy with increase in the 

inhibitor concentration. The purpose of this work is to study the protective effect of some triazole derivatives 

against corrosion of low-carbon steel and to confirm the film theory of adsorption of organic heterocyclic 

corrosion inhibitors by both experimental electrochemical, surface physico-chemical methods and theoretical 

quantum chemical calculations. 
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Experimental 

The tested inhibitors, namely 4,5-diphenyl-4H-1,2,4-triazole-3-thiol (4,5-PhTAT) and 3,4-diphenyl-5-

(prop-2-yn-1-ylthio)-4H-1,2,4-triazole (3,4-PhPTTA), were synthesized according to a previously described 

experimental procedure [6, 18]. The concentration range of both inhibitors was 10–200 mg∙l-1. 

Geometry optimization of the structures of individual compounds was carried out using the semi-

empirical GFN2-xTB method, taking into account their implicit solvation in water using the ALPB method 

in the XTB program [19, 20]. The calculation of the mole fractions of individual protomers in solution at 

298.15 K was performed using the Boltzmann distribution based on the computed Gibbs energies of the op-

timized structures. The estimation of the protonation constants of compounds was done using the ChemAxon 

Marvin pKa Plugin [21]. 

Electrochemical measurements were carried out using the electrochemical system Solatron 1280C. 

Steel potentials were measured relative to a silver chloride electrode. Potentiodynamic polarization and im-

pedance measurements were performed using a glass electrochemical cell with an external space for silver 

chloride and counter platinum electrodes. Voltammetric studies were performed according to a three-

electrode scheme in potentiodynamic mode at a working electrode potential sweep rate of 0.5 mV·s-1. Prior 

to polarization, the electrode was kept in the test solution for 30 min to establish a free corrosion potential, 

Ecor. Impedance measurements were recorded in the range of frequencies f from 20 kHz to 0.1 Hz, a sine 

wave with 5 mV amplitude was used to perturb the system. The criterion for estimating equivalent electrical 

circuits was the χ2 parameter calculated in ZView2. A satisfactory equivalent scheme is for χ2 less than 10–3 

when weight coefficients calculated from experimental values of the impedance modulus. All potentials are 

reported vs standard hydrogen electrode. 

Working electrodes with the composition, wt.%: Fe — 98.27; C — 0.20; Mn — 0.50; Si — 0.30; P — 

0.04; S — 0.04; Cr — 0.15; Ni — 0.30; Cu — 0.20, were used in the study. The experiments were conducted 

in 0.1 N solution were prepared from chemically pure H2SO4 and distilled water. 

The corrosion rate, ICR (cm·s-1), was estimated through the following equation combining Stern-Geary 

and Faraday equations: 

 ICR = (MB)/(zFSρRp), 

where M is average molecular weight of the metal or metal alloy (g·mol-1), S is the surface area (cm2), F is 

the Faraday constant [96 485 А·s·mol-1], z is the average charge of the metal, and ρ is the density of the met-

al (g·cm3), B is the Stern-Geary constant (V) defined as B = babc/2.3(ba +bc), Rp is polarization re-

sistance, (Ω). Units of corrosion rate in this paper are given in mm·year-1. 

According to the theory of polarization resistance the Rp method is based on charge balance and the cur-

rent-potential relationship (Tafel relationship) for electron-transfer reactions. Rp is defined as the differential 

of the overpotential, ΔE (volt), over the withdrawn current, icorr (amp), when the slope of polarization curves 

at the corrosion potential: 

 Rp = dE/di = babc /2.3icor(ba + bc) = B/icorr, 

where ba and bc are anodic and cathodic Tafel constants (volt), icorr is the corrosion current (A·cm-2) [22, 23]. 

The inhibition efficiency for each concentration of inhibitors was calculated according to the equation,  

 IE(%) = (1 – icorr/i0corr)·100, 

where IE, is the inhibition efficiency, icorr and i0corr are the corrosion current densities (A·cm-2) with and with-

out inhibitor, respectively. The corrosion current density (icorr) was determined by extrapolating the Tafel 

lines. 

On the basis of Young’s equation plus Owen-Wendt’s theory, the surface free energies of the steel sur-

face can be calculated using the contact angles between the two test liquids (water and diethylene glycol) and 

steel surface [24, 25]. Contact angle measurements were carried out using a tensiometer DSA 25E (KRUSS) 

by the sessile drop method [26]. Test liquids (liquid with known the value of surface tension) were dropped 

to the surface of the sample using a dispenser, after that the angle between three phases (steel, test liquid and 

air) was measured. The volume of test liquids was 1–2 µl. All the experiments were carried out after immer-

sion of mild steel for 24 hours in 0.1 N H2SO4 in absence and presence of different concentrations of inhibi-

tors. After immersion samples were cleaned with distilled water repeatedly and dried in hot air, then the con-

tact angles were measured. 
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Results and Discussion 

Based on the structural characteristics of 4,5-PhTAT, it is reasonable to posit that this compound exhib-

its amphiprotic behavior in aqueous systems, where it can undergo both protonation and deprotonation reac-

tions. According to free energy calculations, the tautomeric form with proton moved to the N atom domi-

nates in the neutral state (Fig. 1). 

 

 

 

 

 4,5-PhTAT−  

   
4,5-PhTAT (1) 

0.0 % 

4,5-PhTAT (2) 

100.0 % 

4,5-PhTAT (3) 

0.0 % 

   
4,5-PhTAT H+ (1) 

4.3 % 

4,5-PhTAT H+ (2) 

95.7 % 

4,5-PhTAT H+ (3) 

0.0 % 

Figure 1. The optimized geometries of the deprotonated molecule (anion) 4,5-PhTAT,  

as well as the tautomers of the neutral molecule and its mono-protonated form obtained  

at the GFN2-xTB[ALPB(H2O)] theory level with their relative fractions (%) in solution at 298.15 K 

The protonation/deprotonation equilibrium constants were computed using the Marvin pKa Plugin pro-

gram, taking into account tautomerization. The results indicate that deprotonation is the only feasible out-

come in solutions with weakly alkaline properties (pKa = 7.21). Conversely, the calculations strongly suggest 

that protonation is practically unattainable, as evidenced by the extremely low predicted value of the corre-

sponding equilibrium constant (pKa = –4.65). Notably, the calculations reveal that among the three feasible 

tautomers of the protonated form present in solution, the 4,5-PhTAT H+ (2) tautomer is expected to be the 

predominant species. 

Protonation of 3,4-PHPTTA 

Only protonation processes are possible for 3,4-PHPTTA. In contrast to 4,5-PhTAT, protonation of 

3,4-PHPTTA is entirely possible in strongly acidic aqueous solutions (with a pKa value of 0.97 for the 

3,4-PHPTTA H+(1) form and 0.22 for the 3,4-PHPTTA H+(2) form). The calculation of the molar fraction of 

monoprotonated forms using the GFN2-xTB[ALPB(H2O)] method agrees well with the results obtained 

from the Marvin pKa Plugin and confirms the predominance of the 3,4-PHPTTA H+ (1) protomer (Fig. 2). 
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Figure 2. The optimized geometries of the neutral molecule 3,4-PHPTTA and its monoprotonated tautomers  

obtained at the GFN2-xTB[ALPB(H2O)] level of theory with their relative fractions (%) in solution at 298.15 K 

Based on the results of the calculations, it was shown that in acidic H2SO4 solutions, inhibitors 

4,5-PhTAT and 3,4-PHPTTA exist in different forms: 3,4-PHPTTA molecules are predominantly protonat-

ed, while 4,5-PhTAT exists as neutral molecules. 

Polarization curves for mild steel in 0.1 N H2SO4 solution without and with addition of 100 mg∙l-1 of 

4,5-PhTAT and 3,4-PhPTTA are shown in Figure 3. 

 

 

Figure 3. Potentiodynamic polarization curves for mild steel  

in 0.1 N H2SO4 with different triazole derivatives 

Analysis of Figure 3 and Table 1 reveals that the presence of both triazoles resulted in a shift of the cor-

rosion potential towards the anodic direction in comparison with the result obtained in the blank acid solu-

tion (Table 1). The anodic and the cathodic current densities were decreased, indicating that 4,5-PhTAT and 

3,4-PhPTTA suppressed both the anodic and cathodic reactions (Fig. 3). 

Table 1 shows that in the case of 4,5-PhTAT corrosion current decreased already at 10 mg∙l-1 and had 

minimal value at 50 mg∙l-1, then it slightly increased with the growth concentration. If added to the system 

3,4-PhPTTA, corrosion currents slowly decrease with increasing concentration, it appears from 50 mg∙l-1. 

Figure 3 demonstrates that polarization curves show two linear parts in the anode region in the presence 

of inhibitors, but Table 1 shows only Tafel coefficients near by corrosion potential. It is shown that, the in-

jection of inhibitors decreased the rate of cathode process greater than anodic, as the bc has increased with 

raising concentration. According to linear polarization results, the corrosion rate decreases from 

1.13 mm∙year-1 to 0.023 and 0.049 mm∙year-1 (47 and 23 times) with presence 4,5-PhTAT and 3,4-PhPTTA 

respectively. 
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T a b l e  1  

Polarization Parameters for Mild Steel in 0.1 N H2SO4 Solution  

Containing Different Concentrations of 4,5-PhTAT and 3,4-PhPTTA at 298 K 

Inhibitor C, mg∙l-1 
Tafel polarization Linear polarization 

–Ecorr, mV icorr, A∙cm-2 ba, mV bc, mV Rp, Ω ICR, mm∙year-1 

– – 677 8.34·10-5 51 125 190 1.13 

4,5-PhTAT 

10 625 3.56·10-5 53 132 2994 0.041 

50 619 2.45·10-6 55 140 5154 0.023 

100 614 2.09·10-6 54 160 4831 0.024 

200 604 2.87·10-6 51 189 4466 0.033 

3,4-PhPTTA 

10 672 8.10·10-5 48 120 200 1.25 

50 654 9.19·10-6 45 130 1603 0.11 

100 645 7.15·10-6 47 158 1943 0.083 

200 601 4.18·10-6 50 157 2493 0.049 

 

Figure 4 shows the Nyquist diagrams of impedance data of mild steel in 0.1 N sulfuric acid solution 

with different concentrations 4,5-PhTAT and 3,4-PhPTTA. Impedance spectra in pure acid solution are pre-

sented as the insertion on one of the diagrams. These diagrams (Fig. 4) at Ecorr are characterized by a de-

pressed capacitive semicircle at high to medium frequencies. The dispersion is explained by surface hetero-

geneity due to surface roughness [26, 27]. Hence the inhibition efficiency has a tendency to grow as the val-

ues of Rct increase. 

 

 
(a) 

 

 
(b) 

Figure 4. Nyquist diagrams of mild steel in a solution of 0.1 N H2SO4 at Ecorr  

with addition of various concentration of (a) and (b) 3,4-PhPTTA 
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The calculation results correlate with the electrochemical results. 4,5-PhTAT gives a greater inhibition 

efficiency than 3,4-PhPTTA at low concentration due to the neutral form of molecules. The protonated form 

of 3,4-PhPTTA molecules at low concentration are pushed off the surface of mild steel with positive charge 

in sulfuric acid solution. 

The calculation of the free surface energy (SFE) of steel was carried out before and after contact with a 

corrosive medium to confirm the assumptions about the formation of the protective film and the chemical 

nature of adsorption. The value of SFE due to the isolation of its polar (γр) and dispersion (γd) components 

can indicate the direction of further modification to increase resistance of the corrosion system. 

The surface energy parameters were calculated based on the analysis of the Owen-Wendt’s equation: 

 Wа = γLG(1 + cosθC) = 2(γd
SG γd

LG)0,5 + 2(γp
SG γp

LG)0,5, 

where Wа — work of adhesion, γLG — the liquid/air interfacial tension, γd
SG, γp

SG — polar and dispersive 

component of surface energies of steel, γp
LG, γd

LG — polar and dispersive component of surface tension of 

test liquids, cosθC — the contact angle for test liquids at steel surface after corrosion. 

Figure 5 demonstrates images of test liquids drops on the steel surface after exposition in corrosion me-

dium with inhibitors during 24 hours. 

 

 
(а) 

 
(b) 

Figure 5. Surface wettability of steel surface after corrosion in 0.1 N H2SO4 solution  

with (a) 4,5-PhTAT and (b) 3,4-PhPTTA 

In general, the steel surface before corrosion has a hydrophilic character, since metals and metal alloys 

have high surface energy values and wettability by liquids with lower surface tensions. Thus, the surface en-

ergies of ferrite and cementite are 2482 and 2050 mJ∙m-2 [25], these steel phases are wetted by water with 

surface tension 72 mJ∙m-2 [28]. According to [29], the contact angle of mild steels by water is about 64° [30]. 

In our case, the contact angle is 82°, this value is close to the contact angle on pyrolytic graphite (83.9°). 

This allows to propose that the surface is enriched by carbon. 
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The contact angle increased to 136° after exposure of samples in pure sulfuric acid that leads to surface 

hydrophobization significantly. After that surface roughness increased as a result of iron dissolution and sur-

face enrichment by carbon — the contact angles are close to those of fine-dispersed graphite and gra-

phene [28, 29]. The hydrophobicity is also shown by the wettability of the steel by less polar liquid after im-

mersion in pure acid. The contact angles decrease from 48° to 3°, if the test liquid is changed from water to 

diethylene glycol. 

The steel surface is also hydrophobized in the presence of the inhibitors (contact angles range from 

105° to 130°); however, this is caused by other reasons. In this case, the hydrophobicity increased probably 

due to the formation of a protective film of inhibitor on the steel surface. The contact angle of the primary 

steel surface is 48,7°±0,9°, then after corrosion in sulfuric acid it is decreased to 3,6°±0,5° and finally the 

contact angle in presence of inhibitors changes in the range of 35–70°. There is a tendency to growth with 

increasing inhibitor concentration. 

These changes in the wettability of test liquids after corrosion indicate a different state of steel surface. 

Figure 6 demonstrates the redistribution of the polar and dispersion components of the free surface energy, 

its values and the inhibition efficiency are given in Table 2. 

The immersion of the samples in blank sulfuric acid leads to significant hydrophobization of the steel 

surface, the contact angle increases to 136 ̊as a result of the dissolution of iron and the surface enrichment 

with carbon [31-33]. 

The steel surface in the presence of an inhibitor is also hydrophobized — the contact angles are in the 

range of 105̊ — 130̊. Probably, the effect of hydrophobization of the surface is associated with the formation 

of a protective film of the inhibitor, and not with the increase of the carbon concentration on the steel sur-

face. 

Also the ratio of the polar and dispersion components of the free surface energy changes when samples 

are kept in inhibited acid. Calculated SFE values and the degrees of protection calculated from the results of 

weight loss testing are presented in Table 2. 

T a b l e  2  

Surface energies for test liquids (22° C) and degree of protection of St3 after weight loss tests  

in the presence of triazole derivatives in 0.1 N H2SO4 solution 

Conc., mg∙l-1 γp
SG, mJ∙m-2 γd

SG, mJ∙m-2 γSG, mJ∙m-2 γd
SG/γp

SG Z, % 

Before immersion 6,2 24,98 31,18 4,0  

0 43,4 149,96 193,32 3,5  

4,5-PhTAT 

50 3,73 70,19 73,92 18,8 96 

100 6,40 78,18 84,58 12,2 92 

200 9,25 83,96 93,21 9,1 92 

3,4-PhPTTA 

50 1,13 53,40 54,53 47,3 94 

100 1,06 42,12 43,18 39,7 95 

200 2,53 43,28 45,82 17,3 95 

 

 

Figure 6. The effect of redistribution of the free surface energy with increasing concentration of inhibitors 
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4,5-PhTAT has higher value of ratio dispersion and polar components of the free surface energy (Ta-

ble 2). 4,5-PhTAT forms hydrophobic film at low concentration and, due to this, has inhibition properties 

already at 10 mg·l-1. 3,4-PhPTTA doesn’t have inhibition activity at low concentration. 

Conclusions 

1. 4,5-diphenyl-4H-1,2,4-triazole-3-thiol (4,5-PhTAT) and 3,4-diphenyl-5-(prop-2-yn-1-ylthio)-4H-

1,2,4-triazole (3,4-PhPTTA) act as good inhibitors for mild steel in 0.1 N H2SO4, the rate of corrosion is re-

duced by 47 and 23 times, respectively. The inhibition efficiency depended from concentration: 4,5-PhTAT 

has the best inhibition efficiency value at 50 mg·l-1 and 3,4-PhPTTA only at 200 mg·l-1. 

2. Polarization curves proved that 4,5-PhTAT and 3,4-PhPTTA were mixed type inhibitors, but which 

can suppress cathodic reactions more. Impedance plots indicated that Rct values increase as well as shown in 

polarization results. Theoretical calculations provide good support to experimental electrochemical results. 

3. The steel surface in the presence of both compounds becomes more hydrophobic, as the contact angle 

increases from 82̊ to 120̊ — 130̊ depending on the inhibitor concentration. Also, the free surface energy of 

steel decreases in the presence of inhibitors compared to pure acid (from 193 mJ∙m-2 to 46 — 74 mJ∙m-2), and 

the SFE components are redistributed: the contribution of the dispersion component with adding triazole de-

rivatives in corrosion media to the total value of SFE increases by 3-4 times compared to the test steel sur-

face. 

4. Redistribution in polar and dispersion components consist of different forms of molecular existence: 

3,4-PHPTTA is predominantly protonated, while 4,5-PhTAT is neutral molecules according to quantum 

chemical calculation. 
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