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Multicomponent Synthesis of Novel Unsymmetric 6-Aryl Substituted  

5-Nitropyridines 

We have previously studied a multicomponent reaction for the synthesis of unsymmetrical 5-nitro-1,4-

dihydropyridines using unsubstituted 2-nitroacetophenone, 1,3-dicarbonyl compounds, and various aldehydes 

such as formaldehyde, acetaldehyde, and furfural. This paper reports the use of unsymmetrical 3-acetyl-5-

nitro-1,4-dihydropyridines containing aryl substituents at the 6-position in a multicomponent synthesis reac-

tion. The starting aryl-substituted nitroacetophenones were prepared by two methods. The first method in-

volved the two-step Katritzky method, which is described in the literature. This method consists of preparing 

N-acylbenzotriazoles from the corresponding substituted derivatives of benzoic acid and 1,2,3-benzotriazole 

in the presence of thionyl chloride. This is followed by C-acylation of nitromethane in supernatron medium 

(t-BuOK – DMSO). A number of 2-nitroacetophenone derivatives were prepared from more commercially 

available aromatic aldehydes by the Henry reaction with nitromethane followed by oxidation of the resulting 

secondary nitroalcohols. The multicomponent reaction of 6-aryl-substituted 5-nitro-1,4-dihydropyridines and 

their subsequent aromatization into 5-nitropyridines allowed us to reduce the overall reaction time by more 

than 40 times and to increase the total yield of 5-nitro-6-arylpyridines by an average of twofold compared to 

the method described in the literature. Furthermore, the 3-acetyl-5-nitropyridines we have obtained are signif-

icant intermediates in the synthesis of novel, more complex heterocyclic systems with potential biological ac-

tivity. These systems include δ-carbolines and epoxybenzooxocyno[4,3-b]pyridines, which are currently of 

great interest for the study of their properties. 

Keywords: green chemistry, multicomponent reaction, substituted 2-nitroacetophenones, pyridine derivatives, 

5(3)-nitro-1,4-dihydropyridines, 5(3)-nitropyridines, 3-acetyl-5-nitropyridines, heterocyclic compounds. 

 

Introduction 

During the 1980s and 1990s, pharmaceuticals containing 1,4-dihydropyridine were developed and 

proved to be effective. These pharmaceuticals are now known as “Dihydropyridine calcium channel block-

ers” and are used as L-type calcium channel blockers [1]. They are commonly used to treat cardiovascular 

diseases such as hypertension, angina pectoris, arrhythmias, and for the prevention of heart disease. The 

drugs work by blocking the entry of calcium into the cells of the heart and blood vessels, causing them to 

relax and dilate [2]. 

Dihydropyridine calcium channel blockers primarily lower blood pressure by causing relaxation of the 

smooth muscle in the walls of blood vessels. In contrast, certain L-type calcium channel blockers, such as 

those from the phenylalkylamine class like verapamil, exert a notable impact on the heart [3-4]. 

An example of the use of compounds from the 1,4-dihydropyridine class in pharmacology is nifedipine. 

It was patented in 1967 and is listed in the World Health Organization’s Essential Medicines List. As of 

2021, this medication was the 128th most frequently prescribed drug in the United States, with over 4 million 

prescriptions [5–7]. 

Ongoing research continues to explore novel methods for synthesizing and discovering effective medi-

cations based on 1,4-dihydropyridine (1,4-DHP) and its derivatives (Fig.). 

For instance, over 20 years ago, the neuroprotective drug cerebrocrast 4 was discovered in the search 

for more effective drugs for high blood pressure. 

Cerebrocrast exhibits a high affinity for DHP-receptors and is recognized for enhancing cognitive abili-

ties. It functions as a nootropic agent, improving cognitive functions and memory, while also providing neu-

roprotective benefits by tackling age-related, hypoxic, and alcohol-induced neuronal disorders [8]. 
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Figure. The structural formulas of bioactive 1,4-DHPs  

The synthesis of symmetrical derivatives of 1,4-dihydropyridine of types 1 and 2 using the Hantzsch 

method with a double equivalent of the dicarbonyl compound is straightforward and yields are consistently 

high. However, the one-step synthesis of unsymmetrical derivatives of 1,4-dihydropyridine of type 3 using 

the Hantzsch method is challenging. This is mainly due to the different reactivity of the carbonyl compounds 

used, which leads to a mixture of different products, including symmetrical 1,4-dihydropyridines. 

The synthesis of unsymmetrical 5-nitropyridines of type 10a-c involves the reaction of enamines 

β-dicarbonyl compound and nitrochalcone, followed by oxidation of the obtained 1,4-dihydropyridines 9a-c 

(Scheme 1) [9]. This method of preparation requires the synthesis of starting enamines [11] and nitrochal-

cone [10], high time and energy costs, and 1,4-dihydropyridines 9a-c are formed with relatively low overall 

yields. 

 

 

Scheme 1. Three step synthesis of 4-substituted 5-nitro-6-phenylpyridines 

A one-step, three-component method for the preparation of 4-substituted 5-nitro-6-phenylpyridines 

11a-c, which are prepared from nitroacetophenone 5, enamine -dicarbonyl compounds 8a-c and triethylor-

thoformate [12-13], is also reported in the literature (Scheme 2). 

 

 

Scheme 2. A one-step method for the preparation of 4-substituted 5-nitro-6-phenylpyridines 
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This method, in comparison with the classical method, proceeds in one stage and does not require oxi-

dative aromatization. However, in our opinion, this method has a number of disadvantages, namely high du-

ration of all reactions (from 50 to 122 hours), long heating time, use of inert gas, use of more expensive tri-

ethylorthoformate, relatively low overall reaction yield, as well as an additional stage of preliminary prepara-

tion of β-dicarbonyl compounds 8a-c with enamine. 

In [14–16], we successfully applied and extensively tested the methodology for the four-component 

synthesis of 12-c type 1,4-DHP. Nitroacetophenone (or nitroacetone) 5, the corresponding β-dicarbonyl 

compound 7 in equivalent molar amounts, an excess of ammonium acetate and an aldehyde (formaldehyde, 

furfural, acetaldehyde) or its sources (urotropine, acetal) were used for the reaction (Scheme 3). 

 

 

Scheme 3. Synthesis of 4-unsubstituted and 4-substituted 5-nitro-6-phenylpyridines 

Therefore, our proposed method for the synthesis of 4-unsubstituted and 4-substituted 5-nitro-6-phenyl-

1,4-dihydropyridines and their subsequent conversion into pyridines enabled us to reduce the overall reaction 

time and increase the overall combined yield of 5-nitro-6-phenylpyridines by almost twofold compared to 

established methods in the literature. 

Experimental 

Materials 
1H and 13C NMR spectra were recorded on a Magritek spin solve 80 carbon ultra (81 and 20 MHz, re-

spectively) instruments using DMSO-d6 and CDCl3 the internal standard, with residual solvent signals (2.49 

and 39.9 ppm for 1Н and 13C nuclei in DMSO-d6; 7.25 and 77.0 ppm for 1Н and 13C nuclei in CDCl3). 

The physicochemical and spectral characteristics of compounds 19a-c were in agreement with the lit-

erature data [13]. 

6-aryl-5-nitro-1,4-dihydropyridines 18a-f (general method). To previously dissolved substituted ni-

troacetophenone (5 mmol) in glacial acetic acid (4-5 mL), 0.18 g (1.3 mmol) of urotropine, 1.16 g (15 mmol) 

of ammonium acetate and 0.50 g (5 mmol) of acetylacetone were added. The reaction mixture was stirred at 

60 °C for 3–10 min. The reaction mixture with crystalline precipitate was cooled to 0–5 °C, filtered, washed 

first with 50 % aqueous 2-propanol solution, then with water. The product was recrystallized from 2-

propanol. 

1-(2-methyl-5-nitro-6-(p-tolyl)-1,4-dihydropyridin-3-yl)ethan-1-one (18a). Yield 0.530 g (39 %), 

orange crystals, mp 157–159 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 2.37 (s, 3 H, CH3); 3.69 

(s, 2 H, CH2); 7.26 (br. s, 4 H, H-2,3,5,6 Ar); 9.15 (s, 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 

18.0; 20.9; 27.2; 30.2; 111.0; 122.4; 127.6; 128.8; 131.0; 138.9; 143.4; 147.7; 197.0. 

1-(6-(4-bromophenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18b). Yield 0.826 g 

(60 %), red crystals, mp 166–167 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.15 (s, 3H, CH3); 2.25 (s, 3H, CH3); 3.70 (s, 2 H, CH2); 7.33 (d, 

J= 8.30 Hz, 2 H, H-2,6 Ar); 7.68 (d, J=8.30 Hz, 2 H, H-3,5 Ar); 9.23 (br. s., 1 H, NH). 13C NMR (20 MHz, 

DMSO-d6) δ ppm: 18.0; 27.0; 30.2; 111.1; 122.6; 122.8; 129.9 (2 C); 131.3 (2 C); 133.3; 143.2; 146.5; 

197.0. 

1-(6-(4-methoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18c). Yield 0.547 g 

(38 %), orange crystals, mp 264–266 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.23 (s, 3 H, CH3); 2.29 (s, 3 H, CH3); 3.77 (s, 2 H, CH2); 3.88 

(s, 3 H, OCH3); 7.00 (d, J=8.60 Hz, 2 H, H-3,5 Ar); 7.32 (d, J=8.60 Hz, 2 H, H-2,6 Ar), 9.03 (br. s., 1 H, 



Kulakov, I.I., Chikunov, S.Y. et al. 

16 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 2(114) 

NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 18.0; 27.1; 30.2; 55.7; 110.8; 111.3; 120.4; 123.2; 123.8; 

128.5; 130.6; 143.6; 144.4; 156.2; 197.0. 

1-(6-(4-fluorophenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18d). Yield 0.856 g 

(62 %), orange crystals, mp 178–179oC. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.25 (s, 3 H, CH3); 3.70 (s, 2 H, CH2); 7.18–

7.54 (m, 4 H, H-2,3,5,6 Ar); 9.22 (br. s., 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 18.5; 27.7; 30.7; 

111.6; 115.3; 116.4; 123.3; 130.5; 130.9 (2 C); 143.8; 147.2; 169.2; 197.6. 

1-(6-(2-methoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18e). Yield 0.706 g 

(49 %), orange crystals, mp 156–157 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.14 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 3.69 (br. s., 2 H, CH2); 

3.76 (s, 3 H, OCH3); 7.02–7.44 (m, 4 H, H-3,4,5,6 Ar); 9.15 (s, 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ 

ppm: 18.0; 27.1; 30.2; 55.7; 110.8; 111.3; 120.4; 123.2; 123.8; 128.5; 130.6; 143.6; 144.4; 156.2; 197.0. 

1-(6-(3,4-dimethoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18f). Yield 

0.429 g (27 %), orange crystals, mp 217–219 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 3.68 (s, 2 H, CH2); 3.75 

(s, 3 H, OCH3); 3.80 (s, 3 H, OCH3); 6.78 — 7.09 (m, 3 H, H-2,5,6 Ar); 9.13 (s, 1 H, NH). 13C NMR (20 

MHz, DMSO-d6) δ ppm: 18.0; 27.2; 30.2; 55.6; 55.7; 110.9; 111.5; 111.7; 120.5; 122.1; 125.1; 143.5; 147.5; 

148.5; 149.8; 196.9. 

6-aryl-5-nitropyridines 19a-f (general method). To a mixture of 1,4-dihydropyridine (0.2 mmol) in 

glacial acetic acid (1 mL) cooled to 0 °C, a solution of 0.03 g CrO3 (0.3 mmol) in H2O (0.5 mL) was added 

dropwise at such a rate that the temperature of the reaction mixture did not exceed 10 °C. After addition of 

the CrO3 solution, stirring was continued for 2 hours, and then the mixture was poured into an ice-water mix-

ture (20 mL) and neutralized with aqueous ammonia. The crystals were filtered and recrystallized from etha-

nol. 

1-(2-methyl-5-nitro-6-(p-tolyl)pyridin-3-yl)ethan-1-one (19a). Yield 0.481 g (89 %), white crystals, 

mp 97–98 °C. (lit. mp — 98–99 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.42 (s, 3H, CH3); 2.67 (s, 3H, CH3); 2.88 (s, 3H, CH3); 7.28 (d, 

J=7.10 Hz, 2H, H-3,5 Ar); 7.52 (d, J=7.10 Hz, 2H, H-2,6 Ar); 8.42 (s, 1H Py). 13C NMR (20 MHz, CDCl3) δ 

ppm: 21.2; 25.2; 29.3; 128.1; 129.1; 130.9; 133.3; 135.2; 137.6; 143.3; 152.7; 161.9; 197.5. 

1-(6-(4-bromophenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19b). Yield 0.516 g (77 %), light 

yellow crystals, mp 146–147 °C. (lit. mp — 148–149 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.69 (s, 3H, CH3); 2.88 (s, 3H, CH3); 7.46 (d, J= 8.40 Hz, 2 H, 

H-3,5 Ar); 7.63 (d, J=8.30 Hz, 2 H, H-2,6 Ar); 8.47 (s, 1H, H-4 Py). 13C NMR (20 MHz, CDCl3) δ ppm: 

25.2; 29.3; 125.1; 129.9; 130.9; 132.0; 133.3; 134.6; 143.2; 152.7; 162.0; 197.4. 

1-(6-(4-methoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19c). Yield 0.378 g (66 %), 

white crystals, mp 103–104 °C. (lit. mp — 101–102 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.64 (s, 3H, CH3); 2.86 (s, 3H, CH3); 3.85 (s, 3H, OCH3); 7.00 (d, 

J=8.60 Hz, 2 H, H-3,5 Ar); 7.32 (d, J=8.60 Hz, 2 H, H-2,6 Ar); 8.39 (s, 1H, H-4 Py). 13C NMR (20 MHz, 

CDCl3) δ ppm: 25.3; 29.1; 55.4; 114.3; 121.6; 127.8; 129.8; 130.2; 133.4; 143.0; 153.1; 161.6; 197.5. 

1-(6-(4-fluorophenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19d). Yield 0.499 g (91 %), light 

yellow crystals, mp 119–120 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.76 (s, 3 H, CH3); 2.96 (s, 3 H, CH3); 7.13–7.34 (m, 2 H, H-3,5 

Ar); 7.60–7.77 (m, 2 H, H-2,6 Ar); 8.54 (s, 1 H, H-4 Py). 13C NMR (20 MHz, CDCl3) δ ppm: 25.2; 29.2; 

115.4; 116.5; 130.3; 130.8; 131.8; 133.4; 135.0; 143.3; 152.6; 157.9; 161.9; 170.3; 197.5. 

1-(6-(2-methoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19e). Yield 0.418 g (73 %), 

white crystals, mp 144–145 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.76 (s, 3 H, CH3); 2.96 (s, 3 H, CH3); 3.79 (s, 3 H, OCH3); 6.98 (d, 

J=8.01 Hz, 1 H, H-3 Ar); 7.13-7.64 (m, 2 H, H-4,5 Ar); 7.80 (d, J=7.17 Hz, 1 H, H-6 Ar); 8.58 (s, 1 H, H-4 

Py). 13C NMR (20 MHz, CDCl3) δ ppm: 25.2; 29.2; 55.0; 110.6; 121.5; 125.6; 130.3; 130.8; 131.8; 132.7; 

144.3; 151.4; 156.4; 162.0; 219.8. 

1-(6-(3,4-dimethoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19f). Yield 0.600 g (95 %), 

white crystals, mp 127–128 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.79 (s, 3 H, CH3); 3.01 (s, 3 H, CH3); 4.06 (s, 6 H, OCH3); 7.05 (d, 

J=8.80, 1 H, H-5 Ar); 7.33 (d, J=8.80, 1 H, H-6 Ar); 7.35 (s, 1 H, H-2 Ar); 8.51 (s, 1 H, H-4 Py). 13C NMR 
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(20 MHz, CDCl3) δ ppm: 25.3; 29.1; 56.0 (2 C); 111.1; 111.4; 121.7; 127.8; 129.9; 133.3; 143.2; 149.2; 

151.2; 153.0; 161.6; 197.4. 

Results and Discussion 

The previously described syntheses were based on the use of only unsubstituted 2-nitroacetophenone or 

nitroacetone in multicomponent reactions. In order to extend the possibilities of using this multicomponent 

reaction to synthesize new unsymmetrical derivatives of 5-nitropyridines containing an aryl substituent at the 

sixth position, it was necessary to synthesize aryl-substituted nitroacetophenones. For the preparation of aryl-

substituted nitroketones, the Katritzky method [17-18], which is carried out in two stages, is widely 

used (Scheme 4). 

In the first stage, the corresponding N-acylbenzotriazoles 15a-d are prepared by interaction of commer-

cially available substituted benzoic acid derivatives 14a-d with 1,2,3-benzotriazole in the presence of thionyl 

chloride. Further, the required nitroacetophenones 16a-d were prepared by C-acylation of nitromethane with 

the obtained N-acylbenzotriazoles 15a-d. The reaction was carried out in superbase (t-BuOK – DMSO), with 

the benzotriazole acting as a good leaving group. 

 

 

Scheme 4. Synthesis of aryl-substituted nitroketones by the Katritzky method 

Nitroacetophenones 16e, f were prepared from more readily available aromatic aldehydes by the Henry 

reaction with nitromethane, followed by oxidation of the resulting secondary nitroalcohols 17a, b [19] 

(Scheme 5). During the reaction, in addition to hydroxynitro compounds, nitroalkenes were formed in small 

amounts (up to 20 % according to GC-MS data), i.e. products of elimination of a water molecule from the 

nitro alcohols formed in the first stage. The purification of the obtained target nitro alcohols was carried out 

by column chromatography on silica gel (hexane/ethyl acetate) according to the provided method [19]. 

 

 

Scheme 5. Synthesis of aryl-substituted nitroketones by the Henry reaction 

The prepared aryl-substituted nitroketones were then incorporated into a multicomponent reaction for 

the synthesis of unsymmetrical 4-substituted 3-acetyl-5-nitro-1,4-dihydropyridines 18a-f according to the 

method described in [14] (Scheme 6). However, experimental syntheses showed that the aryl-substituted ni-

troketones used are rather poorly soluble in acetic acid, the solvent we use, which ultimately leads to their 

insufficient involvement in the reaction and, as a consequence, the formation of a significant amount of 

symmetrical side 3,5-diacetyl-1,4-dihydropyridine. To avoid unwanted side processes, we first predissolved 

the nitroacetophenones in acetic acid, and then added excess ammonium acetate and urotropine, and finally 

acetylacetone. 
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Scheme 6. Synthesis of 4-unsubstituted 3-acetyl-5-nitro-6-arylpyridines 

It was found that the yields of the corresponding 3-acetyl-5-nitro-6-aryl-1,4-dihydropyridines 18a-f are 

also related to the presence of electronic effects of the substituent in the aromatic ring. Thus, the donor sub-

stituents slightly reduce the yield of the target product due to a decrease in the partial positive charge on the 

carbon atom of the carbonyl group and, accordingly, lead to a decrease in the CH-acidity of the methylene 

group of nitroketones, which is the main reaction center in the Knoevenagel reaction. 

The oxidation of 5-nitro-6-aryl-1,4-dihydropyridines to the corresponding 5-nitro-6-arylpyridines 19a-f 

was carried out according to the standard method with chromium oxide (VI) in acetic acid solution at room 

temperature. The oxidation proceeded quite smoothly and in high yields (from 66 to 95 %) (Scheme 6). 

Conclusions 

Thus, we have extended the possible scope of application of the multicomponent reaction in the synthe-

sis of six new 6-aryl-substituted 3-acetyl-5-nitro-1,4-dihydropyridines, not previously described in the litera-

ture, whose oxidation afforded the corresponding 5-nitropyridines. 

The multicomponent reaction of 6-aryl-substituted 5-nitro-1,4-dihydropyridines and their subsequent 

aromatization to pyridines allowed the overall reaction time to be reduced by more than 40-fold and the 

overall yield of the target 5-nitro-6-arylpyridines to be almost doubled on average compared to the method 

reported in the literature [12-13]. 

In conclusion, the new 3-acetyl-5-nitro-6-arylpyridines 19a-f synthesized by us can be of great interest 

as intermediate synthons in the synthesis of more complex heterocyclic systems. For example, 3-(5)-

nitropyridines have proved to be good precursors in the synthesis of synthetic analogs of the alkaloid chindo-

line and other structural analogs of substituted δ-carbolines obtained by the Cadogan reaction [20-21]. The 

presence of 3-acetyl and 2-methyl groups in the structure of 5-nitro-6-arylpyridines 19a-f simultaneously 

suggests their potential use as important synthons and in the synthesis of epoxybenzooxocino[4,3-b]pyridine 

derivatives [22–24], which are structural analogs of natural integrastatins. 
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