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Synthesis of Water-Soluble Polyethylene Glycol Fumarates  

for Biomedical Applications 

Polyethylene glycol fumarate (PEGF) with controlled structural composition has been obtained for further 

synthesis of double network cross-linked hydrogels for biomedical applications. The copolymer has been syn-

thesized by polycondensation reaction of fumaric acid and polyethylene glycol (PEG-600). Molecular weight 

of PEGF has been determined by gel permeation chromatography to be approximately 6000 Da with gel per-

meation chromatography. The polycondensation of fumaric acid and PEG-600 was studied throughout the re-

action process. The structure of the reaction product has been evidenced using FTIR- and 1H NMR-

spectroscopy. The quantitative ratios of the amount of –C=C– bonds and –COO groups to –C=O groups in 

the obtained PEGF have been estimated from IR-spectra for different synthesis time. The time-dependence of 

molar ratio of double bonds to methyl groups in PEGF has been obtained from corresponding 1H NMR-

spectra. FTIR and 1H NMR-spectroscopy, both, demonstrate that after the end of reaction the unsaturated  

–C=C– double bonds remain in the structure of the macromonomer, that is essential for further preparation of 

cross-linked hydrogels. The addition of the tightly cross-linked network of polyvinyl alcohol leads to for-

mation of highly tough biocompatible material for preparation of the artificial meniscus which can further be 

used as a solution in the treatment of diseases such as osteoarthritis. 

Keywords: polyethylene glycol, polyethylene glycol fumarate, fumaric acid, polyester resin, macromonomer, 

hydrogels, FTIR- spectroscopy, 1H NMR-spectroscopy. 

 

Introduction 

The creation of novel materials with sufficient mechanical properties for use in various areas of science 

and industry is of great importance. Due to their unique properties such materials have a wide range of appli-

cations starting from additives for building materials to use in medicine [1–16]. Varieties of copolymers have 

been studied to obtain the systems used in medicine for different purposes [17–29], e.g. in tissue engineering 

[18, 22, 27], metallic nanocomposites [25, 26], double network stimuli-responsive hydrogels [23, 30] and so 

on. Among other polymers the oligo-/polyethylene glycol fumarates are recommended and investigated as 

medical hydrogel systems for tissue regeneration and drug delivery purposes due to their best mechanical 

properties [13, 14, 24]. Besides, the cryogels based on oligo-/polyethylene glycol fumarates were effectively 

synthesized for the biomedical applications [27]. High elasticity and simplicity of the synthesis of polyeth-

ylene glycol fumarates make them an interesting and promising object for the development of hydrogels for 

the biomedical application. Biocompatible soft materials made of hydrogels with high toughness based on 

double polymer networks can be used for the replacement of the soft tissue with endoprosthesis which could 

https://doi.org/10.31489/2959-0663/2-24-7
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.31489/2959-0663/2-24-7
mailto:lyazzh@mail.ru
https://orcid.org/0000-0003-4828-2521
https://orcid.org/0000-0003-4044-8419
https://orcid.org/0000-0003-1894-0255
https://orcid.org/0000-0002-2664-6884
https://orcid.org/0000-0003-4574-0902
https://orcid.org/0000-0002-0514-384X
https://orcid.org/0000-0002-3019-5764
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be a solution for the treatment of such severe disease as osteoarthritis [5–9]. Such gels consist of two com-

partments: the first should have rigid and highly cross-linked structure, while the other must be weakly-

crosslinked and possess elasticity [6] to be able to restore after huge deformations applied to a knee joint. In 

this regard, polyesters can serve as building blocks for the second elastic network. For instance, oli-

go/polyethylene glycol fumarates were suggested in the literature as promising polymers for hydrogels in med-

icine [10–12]. Thus, it could be used for the preparation of biocompatible hydrogels based on a of double cross-

linked network. In this case, polyvinyl alcohol could be a material for the first rigid network [13–16]. 

The present article focuses on the synthesis of water-soluble polyethylene glycol fumarate (PEGF) of 

controlled structural composition and the investigation of the changes of the process parameters on the struc-

ture, composition and properties of the final product. 

Experimental 

Materials 

Polyethylene glycol with molecular weight of 600 Da (PEG-600) and fumaric acid were purchased 

from Sigma Aldrich. Milli-Q water was used in all the experiments. 

Synthesis of PEGF 

Polyester resin was synthesized by direct polycondensation reaction of PEG-600 with fumaric acid at a 

molar ratio of the monomers of 1:1 in three-necked round bottom flask equipped with magnetic stirrer, con-

denser with Dean-Stark nozzle, thermometer and vacuum outlet. The system was submerged into glycerin or 

silicone bath to provide uniform heating and was blown with nitrogen. The reaction flask was heated to 160–

170 °C for 4–8 hours and then under high vacuum (147.1 millimeters of mercury) for 10 minutes at the same 

temperature. The reaction was stopped when the calculated amount of water was collected. 

Obtained polymer was purified from low molecular substances by dialysis by submerging the dialysis 

membrane (MWCO 3500 Da (Sigma Aldrich)) into deionized water at room temperature and constant mix-

ing at 250 rpm for 3 days. The deionized water was changed every 6 hours. 

The samples were then dried in a vacuum oven at 80 °C for several days until the copolymer with con-

stant weight was obtained. 

Molar weight estimation 

Molar weights (number-average (Mn) and weight-average (Mw) molecular weights) of the oligo-

/polyesters obtained during the reaction after 4, 5, 6 and 8 hours of polycondensation have been determined 

by gel permeation chromatography (GPC) on a Malvern chromatograph equipped with a Viscotek 270 max 

dual detector (polystyrene was used as a standard; the standard deviation of the molecular weight was ±100-

120). The samples of PEGF were dissolved in water, filtered and analyzed by GPC. 

Bromatometry 

Bromatometry is an analytical method based on the determination of the amount of bromine released in-

to the medium as a result of the reaction with unsaturated double bonds [31]. For the analysis 1 g of the sam-

ple (PEGF) was dissolved in 10 ml of water or the organic solvent and left for 24 hours. Then the mixture of 

KBr and KBrO3 solution was then poured into the sample solution which had been preacidified with 0.1 N 

solution of HCl. In acidic medium the bromine molecules react with the unsaturated double bonds in the sys-

tem. So, the bromide-bromate mixture is then left for 4 hours in a dark place. The access of bromine is titrat-

ed with the 0.1 N solution of Na2S2O3 in the presence of indicator phenolphthalein using microburette. The 

sample containing PEGF was analyzed in parallel with the control sample. The bromine index corresponds to 

the amount of bromine which can be added to 100 g of the substance analyzed. 

FTIR- and 1H NMR-spectroscopy 

The structure of obtained copolymers has been confirmed by FTIR-spectroscopy on a device FSМ 

2201, using standard procedure by preparation of KBr tablets in the wavenumber range 4000–400 cm-1 with 

a resolution of 1 cm-1. 
1H NMR-spectroscopy has been performed on a device Bruker AMX-400 spectrometer at 22 °C. For 

the analysis 0.01 g of dried sample was dissolved in deuterium oxide within 24 hours followed by exposure 

to US-homogenization at 200 W for 10 min. The peak of chemical shift of D2O (4.79 ppm) was used as a 

reference. The frequency range was 950-4100 Hz. This signal was taken as indicated in the references [32, 

33]. 
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Results and Discussion 

The synthesis of PEGF has been carried out by polycondensation reaction of PEG-600 and fumaric acid 

at the molar ratio of PEG 600 and fumaric acid of 1:1 according to the scheme: 

 

 

As was measured by GPC, after 8 h of reaction the macromonomer with molecular weight around 

6000 Da was formed (Fig. 1). 

 

 

Figure 1. Molecular mass of the final product of PEGF obtained after 8 hours of polycondensation 

In order to study the influence of the duration of reaction on the chemical structure of PEGF, the sam-

ples were removed from the reaction mixture after a certain time. The obtained purified products were ana-

lyzed by FTIR-spectroscopy for the presence of active double bonds necessary for the formation of double 

network hydrogels. Figure 2 shows the FTIR-spectra of PEGF formed after 1–8 h of polycondensation. 

The FTIR spcterum of PEFG has typical –C–O– signal of the ether bond in PEG at 1100 cm−1, in addi-

tion, it contains the peaks at 1730 and 1640 cm−1 which respectively correspond to the –C=O and –C=C– 

groups of the fumaryl moiety [12] (Fig. 2). From the FTIR-spectrum of the macromonomer it is obvious that 

with the time the intensity of –C=C– bond decreases, whereas the signal of ester bond –O–C=O– increases 

gradually with deepening the conversion. Note, after 8 h of polycondensation process in PEGF there are still 

active double bonds that are required for further polymerization and the preparation of hydrogels containing 

cross-linked network [12]. 

From Figure 2, the ratios of number of carboxylic groups –O-C=O– and unsaturated double bonds  

–C=C– to the –C=O bonds for different duration of polycondensation reaction were calculated (Fig. 3). The 

dependence shows decreasing number of double bonds and, simultaneously, increasing number of ester 

bonds during the reaction. This effect was previously observed in literature [9]. 
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Figure 2. FTIR-spectra of PEGF obtained after different time of polycondensation of PEG-600 and fumaric acid 
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Figure 3. The dependence of the ratio of number of double bonds –C=C– and carboxylic groups –COO– to the –C=O 

bonds in chemical structure of PEGF, obtained at different time of polycondensation of PEG-600 and fumaric acid 

The average degree of unsaturation of the samples obtained at different time of the reaction determined 

by bromatometry decreases from 7.5 to 5.1 % as the the reaction time increases (Fig. 4). The results of bro-

matometric analysis are in good correlation with the FTIR-spectroscopy data also indicating on the decrease 

of the number of double bonds during the reaction (Fig. 4). Thus, after 8 h of polycondensation, only 5 % of 

double bonds which are essential for further preparation of the double network remain unchanged. 

 

 

Figure 4. Degree of unsaturation for the samples of PEGF obtained  

at a different time of polycondensation of PEG-600 and fumaric acid 

The following chemical shifts are observed on the spectra of the macromonomer [13]: 1) 3.7–

3.9 ppm — the peak of methylene protons (related to –CH2– groups conjugated with the ether groups); the 

peak is characteristic for molecules of polyethylene glycol, built-in the structure of PEGF; 2) 4.3–4.5 ppm — 

the groups of peaks of methylene protons (related to –CH2– groups conjugated with the ester groups); 3) 6.7–

6.8 ppm — signal related to the protons of double bond of fumaric acid built-in the structure of PEGF (poly-

ester). These peak positions are consistent with the 1H NMR data presented in the works [9, 12] for PEGF. 

Thus, NMR data confirm the chemical structure of the synthesized macromonomer (Fig. 5). 
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Figure 5. 1H NMR-spectra of PEGF obtained after 8 h of polycondensation 

From the NMR spectrum, the ratio of integrals of the peaks of double bonds and of methylene groups of 

PEG600 was calculated, which is equal to 0.004. The obtained amount of the double bonds in PEGF is 11 % 

of that theoretically estimated for the “ideal” structure of PEGF to be obtained in polycondensation. There-

fore, NMR data are in semi-qualitative agreement with the FTIR and bromatometry results presented above, 

and they show that a certain fraction of double bonds remains in the PEGF structure after synthesis. 

Thus, 1H NMR- and FTIR-spectroscopies confirmed the formation of PEGF by polycondensation of 

PEG and fumaric acid. At high conversions (after more than 4 hours of polycondensation) the degree of un-

saturation of PEGF decreases, so that after 8 h of reaction the amount of unsaturated double bonds in its 

structure is sufficiently reduced. 

Conclusions 

Macromonomers of PEGF with the molecular weight of about 6 kDa has been synthesized by polycon-

densation of PEG-600 with fumaric acid for 8 h. The time-dependence of the structure of PEGF was ana-

lyzed using bromatometry and FTIR- and 1H NMR-spectroscopies. According to bromatometric analysis and 

IR-spectroscopy, the amount of unsaturated –CH=CH– groups of fumaric acid in PEGF decreases from 4 to 

8 h of synthesis. After 8 h of polycondensation the bromatometry and 1H NMR-spectroscopy both indicate 

the sufficiently smaller amount of unsaturated double bonds that are required for further polymerization of 

PEGF for the formation of hydrogels for biomedical purposes. 
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Multicomponent Synthesis of Novel Unsymmetric 6-Aryl Substituted  

5-Nitropyridines 

We have previously studied a multicomponent reaction for the synthesis of unsymmetrical 5-nitro-1,4-

dihydropyridines using unsubstituted 2-nitroacetophenone, 1,3-dicarbonyl compounds, and various aldehydes 

such as formaldehyde, acetaldehyde, and furfural. This paper reports the use of unsymmetrical 3-acetyl-5-

nitro-1,4-dihydropyridines containing aryl substituents at the 6-position in a multicomponent synthesis reac-

tion. The starting aryl-substituted nitroacetophenones were prepared by two methods. The first method in-

volved the two-step Katritzky method, which is described in the literature. This method consists of preparing 

N-acylbenzotriazoles from the corresponding substituted derivatives of benzoic acid and 1,2,3-benzotriazole 

in the presence of thionyl chloride. This is followed by C-acylation of nitromethane in supernatron medium 

(t-BuOK – DMSO). A number of 2-nitroacetophenone derivatives were prepared from more commercially 

available aromatic aldehydes by the Henry reaction with nitromethane followed by oxidation of the resulting 

secondary nitroalcohols. The multicomponent reaction of 6-aryl-substituted 5-nitro-1,4-dihydropyridines and 

their subsequent aromatization into 5-nitropyridines allowed us to reduce the overall reaction time by more 

than 40 times and to increase the total yield of 5-nitro-6-arylpyridines by an average of twofold compared to 

the method described in the literature. Furthermore, the 3-acetyl-5-nitropyridines we have obtained are signif-

icant intermediates in the synthesis of novel, more complex heterocyclic systems with potential biological ac-

tivity. These systems include δ-carbolines and epoxybenzooxocyno[4,3-b]pyridines, which are currently of 

great interest for the study of their properties. 

Keywords: green chemistry, multicomponent reaction, substituted 2-nitroacetophenones, pyridine derivatives, 

5(3)-nitro-1,4-dihydropyridines, 5(3)-nitropyridines, 3-acetyl-5-nitropyridines, heterocyclic compounds. 

 

Introduction 

During the 1980s and 1990s, pharmaceuticals containing 1,4-dihydropyridine were developed and 

proved to be effective. These pharmaceuticals are now known as “Dihydropyridine calcium channel block-

ers” and are used as L-type calcium channel blockers [1]. They are commonly used to treat cardiovascular 

diseases such as hypertension, angina pectoris, arrhythmias, and for the prevention of heart disease. The 

drugs work by blocking the entry of calcium into the cells of the heart and blood vessels, causing them to 

relax and dilate [2]. 

Dihydropyridine calcium channel blockers primarily lower blood pressure by causing relaxation of the 

smooth muscle in the walls of blood vessels. In contrast, certain L-type calcium channel blockers, such as 

those from the phenylalkylamine class like verapamil, exert a notable impact on the heart [3-4]. 

An example of the use of compounds from the 1,4-dihydropyridine class in pharmacology is nifedipine. 

It was patented in 1967 and is listed in the World Health Organization’s Essential Medicines List. As of 

2021, this medication was the 128th most frequently prescribed drug in the United States, with over 4 million 

prescriptions [5–7]. 

Ongoing research continues to explore novel methods for synthesizing and discovering effective medi-

cations based on 1,4-dihydropyridine (1,4-DHP) and its derivatives (Fig.). 

For instance, over 20 years ago, the neuroprotective drug cerebrocrast 4 was discovered in the search 

for more effective drugs for high blood pressure. 

Cerebrocrast exhibits a high affinity for DHP-receptors and is recognized for enhancing cognitive abili-

ties. It functions as a nootropic agent, improving cognitive functions and memory, while also providing neu-

roprotective benefits by tackling age-related, hypoxic, and alcohol-induced neuronal disorders [8]. 
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Figure. The structural formulas of bioactive 1,4-DHPs  

The synthesis of symmetrical derivatives of 1,4-dihydropyridine of types 1 and 2 using the Hantzsch 

method with a double equivalent of the dicarbonyl compound is straightforward and yields are consistently 

high. However, the one-step synthesis of unsymmetrical derivatives of 1,4-dihydropyridine of type 3 using 

the Hantzsch method is challenging. This is mainly due to the different reactivity of the carbonyl compounds 

used, which leads to a mixture of different products, including symmetrical 1,4-dihydropyridines. 

The synthesis of unsymmetrical 5-nitropyridines of type 10a-c involves the reaction of enamines 

β-dicarbonyl compound and nitrochalcone, followed by oxidation of the obtained 1,4-dihydropyridines 9a-c 

(Scheme 1) [9]. This method of preparation requires the synthesis of starting enamines [11] and nitrochal-

cone [10], high time and energy costs, and 1,4-dihydropyridines 9a-c are formed with relatively low overall 

yields. 

 

 

Scheme 1. Three step synthesis of 4-substituted 5-nitro-6-phenylpyridines 

A one-step, three-component method for the preparation of 4-substituted 5-nitro-6-phenylpyridines 

11a-c, which are prepared from nitroacetophenone 5, enamine -dicarbonyl compounds 8a-c and triethylor-

thoformate [12-13], is also reported in the literature (Scheme 2). 

 

 

Scheme 2. A one-step method for the preparation of 4-substituted 5-nitro-6-phenylpyridines 
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This method, in comparison with the classical method, proceeds in one stage and does not require oxi-

dative aromatization. However, in our opinion, this method has a number of disadvantages, namely high du-

ration of all reactions (from 50 to 122 hours), long heating time, use of inert gas, use of more expensive tri-

ethylorthoformate, relatively low overall reaction yield, as well as an additional stage of preliminary prepara-

tion of β-dicarbonyl compounds 8a-c with enamine. 

In [14–16], we successfully applied and extensively tested the methodology for the four-component 

synthesis of 12-c type 1,4-DHP. Nitroacetophenone (or nitroacetone) 5, the corresponding β-dicarbonyl 

compound 7 in equivalent molar amounts, an excess of ammonium acetate and an aldehyde (formaldehyde, 

furfural, acetaldehyde) or its sources (urotropine, acetal) were used for the reaction (Scheme 3). 

 

 

Scheme 3. Synthesis of 4-unsubstituted and 4-substituted 5-nitro-6-phenylpyridines 

Therefore, our proposed method for the synthesis of 4-unsubstituted and 4-substituted 5-nitro-6-phenyl-

1,4-dihydropyridines and their subsequent conversion into pyridines enabled us to reduce the overall reaction 

time and increase the overall combined yield of 5-nitro-6-phenylpyridines by almost twofold compared to 

established methods in the literature. 

Experimental 

Materials 
1H and 13C NMR spectra were recorded on a Magritek spin solve 80 carbon ultra (81 and 20 MHz, re-

spectively) instruments using DMSO-d6 and CDCl3 the internal standard, with residual solvent signals (2.49 

and 39.9 ppm for 1Н and 13C nuclei in DMSO-d6; 7.25 and 77.0 ppm for 1Н and 13C nuclei in CDCl3). 

The physicochemical and spectral characteristics of compounds 19a-c were in agreement with the lit-

erature data [13]. 

6-aryl-5-nitro-1,4-dihydropyridines 18a-f (general method). To previously dissolved substituted ni-

troacetophenone (5 mmol) in glacial acetic acid (4-5 mL), 0.18 g (1.3 mmol) of urotropine, 1.16 g (15 mmol) 

of ammonium acetate and 0.50 g (5 mmol) of acetylacetone were added. The reaction mixture was stirred at 

60 °C for 3–10 min. The reaction mixture with crystalline precipitate was cooled to 0–5 °C, filtered, washed 

first with 50 % aqueous 2-propanol solution, then with water. The product was recrystallized from 2-

propanol. 

1-(2-methyl-5-nitro-6-(p-tolyl)-1,4-dihydropyridin-3-yl)ethan-1-one (18a). Yield 0.530 g (39 %), 

orange crystals, mp 157–159 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 2.37 (s, 3 H, CH3); 3.69 

(s, 2 H, CH2); 7.26 (br. s, 4 H, H-2,3,5,6 Ar); 9.15 (s, 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 

18.0; 20.9; 27.2; 30.2; 111.0; 122.4; 127.6; 128.8; 131.0; 138.9; 143.4; 147.7; 197.0. 

1-(6-(4-bromophenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18b). Yield 0.826 g 

(60 %), red crystals, mp 166–167 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.15 (s, 3H, CH3); 2.25 (s, 3H, CH3); 3.70 (s, 2 H, CH2); 7.33 (d, 

J= 8.30 Hz, 2 H, H-2,6 Ar); 7.68 (d, J=8.30 Hz, 2 H, H-3,5 Ar); 9.23 (br. s., 1 H, NH). 13C NMR (20 MHz, 

DMSO-d6) δ ppm: 18.0; 27.0; 30.2; 111.1; 122.6; 122.8; 129.9 (2 C); 131.3 (2 C); 133.3; 143.2; 146.5; 

197.0. 

1-(6-(4-methoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18c). Yield 0.547 g 

(38 %), orange crystals, mp 264–266 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.23 (s, 3 H, CH3); 2.29 (s, 3 H, CH3); 3.77 (s, 2 H, CH2); 3.88 

(s, 3 H, OCH3); 7.00 (d, J=8.60 Hz, 2 H, H-3,5 Ar); 7.32 (d, J=8.60 Hz, 2 H, H-2,6 Ar), 9.03 (br. s., 1 H, 
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NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 18.0; 27.1; 30.2; 55.7; 110.8; 111.3; 120.4; 123.2; 123.8; 

128.5; 130.6; 143.6; 144.4; 156.2; 197.0. 

1-(6-(4-fluorophenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18d). Yield 0.856 g 

(62 %), orange crystals, mp 178–179oC. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.25 (s, 3 H, CH3); 3.70 (s, 2 H, CH2); 7.18–

7.54 (m, 4 H, H-2,3,5,6 Ar); 9.22 (br. s., 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ ppm: 18.5; 27.7; 30.7; 

111.6; 115.3; 116.4; 123.3; 130.5; 130.9 (2 C); 143.8; 147.2; 169.2; 197.6. 

1-(6-(2-methoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18e). Yield 0.706 g 

(49 %), orange crystals, mp 156–157 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.14 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 3.69 (br. s., 2 H, CH2); 

3.76 (s, 3 H, OCH3); 7.02–7.44 (m, 4 H, H-3,4,5,6 Ar); 9.15 (s, 1 H, NH). 13C NMR (20 MHz, DMSO-d6) δ 

ppm: 18.0; 27.1; 30.2; 55.7; 110.8; 111.3; 120.4; 123.2; 123.8; 128.5; 130.6; 143.6; 144.4; 156.2; 197.0. 

1-(6-(3,4-dimethoxyphenyl)-2-methyl-5-nitro-1,4-dihydropyridin-3-yl)ethan-1-one (18f). Yield 

0.429 g (27 %), orange crystals, mp 217–219 °C. 
1H NMR (81 MHz, DMSO-d6) δ ppm: 2.16 (s, 3 H, CH3); 2.24 (s, 3 H, CH3); 3.68 (s, 2 H, CH2); 3.75 

(s, 3 H, OCH3); 3.80 (s, 3 H, OCH3); 6.78 — 7.09 (m, 3 H, H-2,5,6 Ar); 9.13 (s, 1 H, NH). 13C NMR (20 

MHz, DMSO-d6) δ ppm: 18.0; 27.2; 30.2; 55.6; 55.7; 110.9; 111.5; 111.7; 120.5; 122.1; 125.1; 143.5; 147.5; 

148.5; 149.8; 196.9. 

6-aryl-5-nitropyridines 19a-f (general method). To a mixture of 1,4-dihydropyridine (0.2 mmol) in 

glacial acetic acid (1 mL) cooled to 0 °C, a solution of 0.03 g CrO3 (0.3 mmol) in H2O (0.5 mL) was added 

dropwise at such a rate that the temperature of the reaction mixture did not exceed 10 °C. After addition of 

the CrO3 solution, stirring was continued for 2 hours, and then the mixture was poured into an ice-water mix-

ture (20 mL) and neutralized with aqueous ammonia. The crystals were filtered and recrystallized from etha-

nol. 

1-(2-methyl-5-nitro-6-(p-tolyl)pyridin-3-yl)ethan-1-one (19a). Yield 0.481 g (89 %), white crystals, 

mp 97–98 °C. (lit. mp — 98–99 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.42 (s, 3H, CH3); 2.67 (s, 3H, CH3); 2.88 (s, 3H, CH3); 7.28 (d, 

J=7.10 Hz, 2H, H-3,5 Ar); 7.52 (d, J=7.10 Hz, 2H, H-2,6 Ar); 8.42 (s, 1H Py). 13C NMR (20 MHz, CDCl3) δ 

ppm: 21.2; 25.2; 29.3; 128.1; 129.1; 130.9; 133.3; 135.2; 137.6; 143.3; 152.7; 161.9; 197.5. 

1-(6-(4-bromophenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19b). Yield 0.516 g (77 %), light 

yellow crystals, mp 146–147 °C. (lit. mp — 148–149 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.69 (s, 3H, CH3); 2.88 (s, 3H, CH3); 7.46 (d, J= 8.40 Hz, 2 H, 

H-3,5 Ar); 7.63 (d, J=8.30 Hz, 2 H, H-2,6 Ar); 8.47 (s, 1H, H-4 Py). 13C NMR (20 MHz, CDCl3) δ ppm: 

25.2; 29.3; 125.1; 129.9; 130.9; 132.0; 133.3; 134.6; 143.2; 152.7; 162.0; 197.4. 

1-(6-(4-methoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19c). Yield 0.378 g (66 %), 

white crystals, mp 103–104 °C. (lit. mp — 101–102 °C) [18]. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.64 (s, 3H, CH3); 2.86 (s, 3H, CH3); 3.85 (s, 3H, OCH3); 7.00 (d, 

J=8.60 Hz, 2 H, H-3,5 Ar); 7.32 (d, J=8.60 Hz, 2 H, H-2,6 Ar); 8.39 (s, 1H, H-4 Py). 13C NMR (20 MHz, 

CDCl3) δ ppm: 25.3; 29.1; 55.4; 114.3; 121.6; 127.8; 129.8; 130.2; 133.4; 143.0; 153.1; 161.6; 197.5. 

1-(6-(4-fluorophenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19d). Yield 0.499 g (91 %), light 

yellow crystals, mp 119–120 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.76 (s, 3 H, CH3); 2.96 (s, 3 H, CH3); 7.13–7.34 (m, 2 H, H-3,5 

Ar); 7.60–7.77 (m, 2 H, H-2,6 Ar); 8.54 (s, 1 H, H-4 Py). 13C NMR (20 MHz, CDCl3) δ ppm: 25.2; 29.2; 

115.4; 116.5; 130.3; 130.8; 131.8; 133.4; 135.0; 143.3; 152.6; 157.9; 161.9; 170.3; 197.5. 

1-(6-(2-methoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19e). Yield 0.418 g (73 %), 

white crystals, mp 144–145 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.76 (s, 3 H, CH3); 2.96 (s, 3 H, CH3); 3.79 (s, 3 H, OCH3); 6.98 (d, 

J=8.01 Hz, 1 H, H-3 Ar); 7.13-7.64 (m, 2 H, H-4,5 Ar); 7.80 (d, J=7.17 Hz, 1 H, H-6 Ar); 8.58 (s, 1 H, H-4 

Py). 13C NMR (20 MHz, CDCl3) δ ppm: 25.2; 29.2; 55.0; 110.6; 121.5; 125.6; 130.3; 130.8; 131.8; 132.7; 

144.3; 151.4; 156.4; 162.0; 219.8. 

1-(6-(3,4-dimethoxyphenyl)-2-methyl-5-nitropyridin-3-yl)ethan-1-one (19f). Yield 0.600 g (95 %), 

white crystals, mp 127–128 °C. 
1H NMR (81 MHz, CDCl3) δ ppm: 2.79 (s, 3 H, CH3); 3.01 (s, 3 H, CH3); 4.06 (s, 6 H, OCH3); 7.05 (d, 

J=8.80, 1 H, H-5 Ar); 7.33 (d, J=8.80, 1 H, H-6 Ar); 7.35 (s, 1 H, H-2 Ar); 8.51 (s, 1 H, H-4 Py). 13C NMR 
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(20 MHz, CDCl3) δ ppm: 25.3; 29.1; 56.0 (2 C); 111.1; 111.4; 121.7; 127.8; 129.9; 133.3; 143.2; 149.2; 

151.2; 153.0; 161.6; 197.4. 

Results and Discussion 

The previously described syntheses were based on the use of only unsubstituted 2-nitroacetophenone or 

nitroacetone in multicomponent reactions. In order to extend the possibilities of using this multicomponent 

reaction to synthesize new unsymmetrical derivatives of 5-nitropyridines containing an aryl substituent at the 

sixth position, it was necessary to synthesize aryl-substituted nitroacetophenones. For the preparation of aryl-

substituted nitroketones, the Katritzky method [17-18], which is carried out in two stages, is widely 

used (Scheme 4). 

In the first stage, the corresponding N-acylbenzotriazoles 15a-d are prepared by interaction of commer-

cially available substituted benzoic acid derivatives 14a-d with 1,2,3-benzotriazole in the presence of thionyl 

chloride. Further, the required nitroacetophenones 16a-d were prepared by C-acylation of nitromethane with 

the obtained N-acylbenzotriazoles 15a-d. The reaction was carried out in superbase (t-BuOK – DMSO), with 

the benzotriazole acting as a good leaving group. 

 

 

Scheme 4. Synthesis of aryl-substituted nitroketones by the Katritzky method 

Nitroacetophenones 16e, f were prepared from more readily available aromatic aldehydes by the Henry 

reaction with nitromethane, followed by oxidation of the resulting secondary nitroalcohols 17a, b [19] 

(Scheme 5). During the reaction, in addition to hydroxynitro compounds, nitroalkenes were formed in small 

amounts (up to 20 % according to GC-MS data), i.e. products of elimination of a water molecule from the 

nitro alcohols formed in the first stage. The purification of the obtained target nitro alcohols was carried out 

by column chromatography on silica gel (hexane/ethyl acetate) according to the provided method [19]. 

 

 

Scheme 5. Synthesis of aryl-substituted nitroketones by the Henry reaction 

The prepared aryl-substituted nitroketones were then incorporated into a multicomponent reaction for 

the synthesis of unsymmetrical 4-substituted 3-acetyl-5-nitro-1,4-dihydropyridines 18a-f according to the 

method described in [14] (Scheme 6). However, experimental syntheses showed that the aryl-substituted ni-

troketones used are rather poorly soluble in acetic acid, the solvent we use, which ultimately leads to their 

insufficient involvement in the reaction and, as a consequence, the formation of a significant amount of 

symmetrical side 3,5-diacetyl-1,4-dihydropyridine. To avoid unwanted side processes, we first predissolved 

the nitroacetophenones in acetic acid, and then added excess ammonium acetate and urotropine, and finally 

acetylacetone. 
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Scheme 6. Synthesis of 4-unsubstituted 3-acetyl-5-nitro-6-arylpyridines 

It was found that the yields of the corresponding 3-acetyl-5-nitro-6-aryl-1,4-dihydropyridines 18a-f are 

also related to the presence of electronic effects of the substituent in the aromatic ring. Thus, the donor sub-

stituents slightly reduce the yield of the target product due to a decrease in the partial positive charge on the 

carbon atom of the carbonyl group and, accordingly, lead to a decrease in the CH-acidity of the methylene 

group of nitroketones, which is the main reaction center in the Knoevenagel reaction. 

The oxidation of 5-nitro-6-aryl-1,4-dihydropyridines to the corresponding 5-nitro-6-arylpyridines 19a-f 

was carried out according to the standard method with chromium oxide (VI) in acetic acid solution at room 

temperature. The oxidation proceeded quite smoothly and in high yields (from 66 to 95 %) (Scheme 6). 

Conclusions 

Thus, we have extended the possible scope of application of the multicomponent reaction in the synthe-

sis of six new 6-aryl-substituted 3-acetyl-5-nitro-1,4-dihydropyridines, not previously described in the litera-

ture, whose oxidation afforded the corresponding 5-nitropyridines. 

The multicomponent reaction of 6-aryl-substituted 5-nitro-1,4-dihydropyridines and their subsequent 

aromatization to pyridines allowed the overall reaction time to be reduced by more than 40-fold and the 

overall yield of the target 5-nitro-6-arylpyridines to be almost doubled on average compared to the method 

reported in the literature [12-13]. 

In conclusion, the new 3-acetyl-5-nitro-6-arylpyridines 19a-f synthesized by us can be of great interest 

as intermediate synthons in the synthesis of more complex heterocyclic systems. For example, 3-(5)-

nitropyridines have proved to be good precursors in the synthesis of synthetic analogs of the alkaloid chindo-

line and other structural analogs of substituted δ-carbolines obtained by the Cadogan reaction [20-21]. The 

presence of 3-acetyl and 2-methyl groups in the structure of 5-nitro-6-arylpyridines 19a-f simultaneously 

suggests their potential use as important synthons and in the synthesis of epoxybenzooxocino[4,3-b]pyridine 

derivatives [22–24], which are structural analogs of natural integrastatins. 
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Characterization Electrospun Nanofibers Based on Cellulose Triacetate  

Synthesized from Licorice Root Cellulose 

Cellulose triacetate (CTA) nanofibers were formed by electrospinning using two binary solvent systems: 

methylene chloride/ethanol and chloroform/acetone. Previously, licorice root cellulose (LRC) with a degree 

of polymerization (DP) of 710 was extracted from licorice root waste by alkaline treatment and hydrogen 

peroxide bleaching at high temperatures. Then CTA with a degree of substitution (DS) of 2.9 and an average 

molecular weight of 175 kDa was synthesized from LRC using acetic acid and acetic anhydride, sulfuric acid 

was as a catalyst. The influence of the electrospinning process and various solvent systems on the morpholo-

gy and structure of nanofibers was studied. The structure and morphology of the nanofibers were character-

ized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, scanning electron microscopy 

(SEM), thermal gravimetric analysis (TGA), and the sorption characteristics were also investigated. The re-

sults showed that the morphology and structure of nanofibers depended on the solvent mixture used. The av-

erage diameters of the CTA nanofibers with grooved morphology varied 200‒700 nm (solvent methylene 

chloride/ethanol) and the dumbbell-shaped (flat ribbon) CTA nanofibers in a wide range from 200 nm to 

4 mkm (solvent chloroform/acetone). 

Keywords: electrospinning, cellulose triacetate, nanofibers, X-ray diffraction, FTIR, degree of crystallinity, 

sorption, thermal stability. 

 

Introduction 

As an eco-friendly and renewable biopolymer on the earth, cellulose gains an extensive interest in pro-

ducing novel polymer materials. In this foreshortening, cellulose- and its derivatives-based fibres and nano-

fibres are very attractive because of their high strength and firmness, biodegradability and safety [1–5]. 

Cellulose can be extracted from different native sources, such as wood, cotton, flax, hemp, ramie, 

etc. [6–8]. In recent years, there has been an increasing trend towards extracting cellulose from agro-

industrial wastes. The properties and structure of cellulose derived from these wastes vary considerably and 

can be used in different industrial sectors [9-10]. One of such agro-industrial waste is licorice root which 

consists of about 40–45 % cellulose. Products based on licorice root are used to treat ailments like heartburn, 

acid reflux, hot flashes, coughs, and bacterial and viral infections [11]. After separating the medicinally ac-

tive component from the licorice root using selective solvents, a large mass of fibre waste remains, which 

can be used as raw material for the cellulose and paper [12]. Using cellulose extracted from licorice root 

waste offers several advantages compared to traditional sources like wood or cotton. Licorice root waste 

provides an alternative source of cellulose that utilizes a byproduct of the licorice industry, reducing waste 

and promoting sustainability. Unlike wood, which requires deforestation, or cotton, which requires extensive 

water and pesticide usage, licorice root waste repurposes a material that would otherwise be discarded. 

The cellulose derivatives having different functional groups in the cellulose chain have great demand, 

and some of them, including cellulose acetate, are produced in large quantities. Cellulose acetate can be used 

for producing membranes, packaging films, optical devices, and polymer composites [13, 14]. Usually, con-

ventional spinning methods such as melt spinning, wet spinning, dry spinning, and gel spinning are used for 

forming cellulose acetate fibres with a few microns in diameter. However, a breakthrough came with the ad-

vent of electrospinning, which allowed researchers to produce ultrathin fibre [15]. Electrospinning is an elec-

trohydrodynamic method used for producing synthetic and natural polymer fibres by electrical force, gather-

ing significant interest due its ability to produce fibres at the nanoscale [16]. Electrospinning of nanofibers is 
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an attracting method to fabricate cellulose acetate membranes with large surface, high porosity and they have 

been extensively used in biomedicine, filtration and protection, energy storage and energy catalyst [17]. 

In this work, cellulose was extracted from licorice root waste, and then cellulose triacetate (CTA) was 

synthesized based on it. The CTA nanofibres were formed by the electrospunning method using new solvent 

systems as a mixed solvent of methylene chloride:ethanol and chloroform:acetone, and their structure and 

morphology were investigated. 

Experimental 

Chemicals and Materials 

The following chemicals and materials were used: sodium hydroxide (NaOH, 99 %), hydrogen perox-

ide (H2O2, 60 %), sodium hypochlorite (17 %), sulfuric acid (H2SO4, 95–97 %), nitric acid (HNO3, 65 %), 

hydrochloric acid (HCl, 37 %) were purchased from “Himreactiv invest” Company Ltd., Uzbekistan Acetic 

acid (CH3COOH, 99 %), ethanol (C2H5OH), acetone ((CH3)2CO) were purchased from “Fortek” Company 

Ltd., Uzbekistan Acetic anhydride ((CH3CO)2O, 99.5 %), methylene chloride (CH2Cl2), chloroform (CHC13) 

were purchased from Sigma–Aldrich, USA. 

Cellulose Extraction 

The cellulose was isolated from wastes. It is a complex procedure that involves chemical or mechanical 

methods and sometimes a combination of both of them. The licorice root waste was treated in 4 % sodium 

hydroxide solution at 120 °C for 2 h to remove noncellulose substances (hemicellulose, lignin etc.), as re-

ported previously [3]. Then the mass was washed with deionized water three times (the pH of the solution 

was neutral) and bleached in 4 % hydrogen peroxide solution at 120 °C for 2 h. The bleached product was 

separated by filtering, and washed three times with deionized water and dried in the drying oven at 100 °C 

for 4 h. The degree of polymerization (DP) of LRC was 710, and it was used for the synthesis of the CTA. 

Cellulose Triacetate Preparation 

The acetylation of LRC was carried out using an acetic acid and acetic anhydride in the presence of sul-

phuric acid as catalyst [18]. Briefly, 2.5 g of licorice root cellulose (LRC) was placed in a flask with a 

ground stopper and treated with a mixture pre-cooled to 15 °C with 15–20 ml of acetic acid, 0.5 ml of 

H2SO4, and 10–20 ml of acetic anhydride. The mixture was left to stand for 2 days at room temperature (or 

4 hours at 40 °C). During this time, the formation of syrup (a viscous concentrated solution of cellulose ace-

tate) occurs. The resulting thick syrup was diluted by half with glacial acetic acid and poured into a large 

vessel with ice water. This produces white flakes of cellulose triacetate, which were left in water for 24 hours 

to decompose completely the acetic anhydride. After this time, cellulose triacetate was filtered, washed, and 

dried at 95–100 °C. CTA had DS of 2.9, average molecular weight of 175 kDa. 

Solution Preparation 

CTA solutions were prepared from CTA samples that previously were condensed in a vacuum oven at 

80 °C for about 8 h. CTA solutions were prepared by dissolving CTA in solvent mixtures at 25 °C with con-

stant stirring for 2 h. As a solvent the mixtures methylene chloride:ethanol (9:1) (CTA-NF-1) and chloro-

form:acetone (9:1) (CTA-NF-2) were used. 

Electrospinning of CTA Nanofibers 

The fabrication of nanofibers was carried out by the electrospinning machine NanoNCeS-robots (South 

Korea). Elestrospinning conditions were the following: the applied voltage was 25 kV, the needle tip and 

collector distance was 14 cm; the needle diameter was 0.353 mm; the rate of the injecting solution was 

45 mkl/min. During the spinning process the relative humidity was 60 % and temperature was 25 °C. The 

electrospun CTA fibers were vacuum-dried at 60 °C for 1 h. 

Characterization Methods 

FTIR 

The FTIR spectrometer “Inventio-S” (Bruker) was used and FTIR spectra were recorded in 400–

4000 cm–1 wavenumber range with a resolution of 2 cm−1 and 32 scans at a temperature of 25 °C. Software 

of OPUS was applied to determine the peaks at specific points. 

Wide-Angle X-ray Diffraction 

XRD studies were carried out using XRD Miniflex 600 (Rigaku, Japan) with monochromatic CuKα ra-

diation isolated by a nickel filter with a wavelength of 1.5418 Å at 40 kV and the current strength of 15 mA. 

The spectrum was recorded in the interval of 2θ = 5°–40°. The data processing of experimental diffraction 

patterns, peak deconvolution, describing the peaks used by Miller indices, peak shape, and the basis for the 
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amorphous contribution were conducted using the software “SmartLab Studio II” and data base PDF-2 (2020 

Powder diffraction file, ICDD). 

Thermogravimetric analysis (TGA) 

TG-DSC/DTA synchronous thermal analyzer STA PT1600 (Linseis, Germany) was used for thermal 

analysis of the samples. The process was carried out by heating ~ 20 mg of the sample in an air atmosphere 

at a heating rate of 10 °C/min from 25 °C to 900 °C. The samples were previously dried to constant weight. 

SEM 

Scanning electron microscopy studies were performed using SEM equipment Veritas-3100 (Korea). 

Magnification of the device is x10-300000, voltage 200V‒300V, maximum scanning area (x÷y÷z) is 

120÷120÷65 µm. 

Sorption Measurements 

The McBain balance with quartz spirals of 1 mg/mm sensitivity was used for the sorption investigation. 

Measurements were carried out in the relative humidity (P/Ps) range 0.10–1.0 at 25 °C until sorption equilib-

rium was established. KM-8 cathetometer was used for observing the change in sample mass during the sorp-

tion process. 

Statistical analysis 

All experimental data were collected in triplicates and data expressed as average ± standard deviation. 

Data were compared using a one-way ANOVA with post-Bonferroni test using GraphPad Prism 5.04 

(GraphPad Software Inc.) 

 

Results and Discussion 

Electrospinning has important tunable working parameters (solution, process and ambient parameters) 

that can affect the fiber diameter and morphology. With control and proper manipulation of these parameters, 

one can produce electrospunnanofibers with desirable physical properties for advanced applications [19]. 

The FTIR spectra of LRC (Fig. 1) have all pеаks corresponding to cellulose structure [3]. Аrоund 

3400 cm-1, vаlеncе vibrаtiоns of the hydrоxyl groups еngаgеd in intra- and intermоlеculаr hydrogen bonding 

were visible. The C–H bond vаlеncе vibrations in the cellulose methylene groups were observed in the range 

of 2895 cm-1 and 1635 cm-1 vibrations of adsorbed water molecules. In the areas of 1420 cm-1, 1335–

1375 cm-1, 1202 cm-1, and 1075–1060 cm-1, the absorption bands matched the valence vibrations of the C–O 

pyranose ring and the strain vibrations of –H, –CH2, –OH, and –CO. 

 

 

Figure 1. FTIR spectra of LRC (1), CTA (2), CTA-NF-1 (3) and CTA-NF-2 (4) 
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The FTIR spectrum of CTA typically shows characteristic peaks associated with the acetylated cellu-

lose structure. There is a decrease in the intensity of the –OH absorption band that the hydroxyl group con-

tents in LRC were reduced after esterification. The weakening of peaks related to hydroxyl groups (–OH) in 

the region (around 3300–3500 cm-1) indicates successful acetylation of cellulose. The ester carbonyl absorp-

tion peaks at 1746.6 сm-1, carbonyl hydrogen (C–H) peak at 1374.3 сm-1 in acetyl group and 1230 cm-1 ab-

sorption (C–O) in O–C=O group confirmed that the ester bond have been formed in the CTA and their rela-

tive intensity is enhanced. This is in agreement with the author’s work in [20] where the characteristic peaks 

developed confirmed the acetylation of cellulose extracted from cotton stalk. 

The FTIR spectra of CTA-NF-1 and CTA-NF-2 show all the peaks characteristic of the CTA, which 

confirms that the structure of nanofibers is similar as CTA. However, an increase in peak intensity at 

3400 cm-1 and 1630 cm-1 is observed in the spectra of nanofibers, which can be related to the water mole-

cules adsorbed on the active surface of the nanofibers. 

The XRD analysis showed of LRC typically exhibits crystalline diffraction peaks corresponding to the 

native cellulose structure. The presence of well-defined peaks in the XRD pattern indicates the crystalline 

nature of cellulose in the licorice root material. There are four crystal reflections in the regions of 2θ = 14о, 

16о, 22о and 34о, corresponding to the planes 110 , 110, 200, and 004 in the X-ray diffraction pat-

terns (Fig. 2a). 

The acetylation process of cellulose disturbs the cellulose crystal structure and leads to the decrease in 

the degree of crystallinity of CTA (Fig. 2(1b)) [21]. CTA has a characteristic wide crystal reflection at 

2θ = 15о–30о, associated with interplanar distances. There are crystalline reflections in the regions of 

2θ = 9.56о, 17.01о, 18.69о, 29.30о and 39.06о, corresponding to the planes (020), (100), (001), (150) and 

(022). The functionalization process leads to the change in the supramolecular structure, which becomes or-

thorhombic with lattice parameters a = 5.64 Å, b = 20.36 Å, c = 4.58Å, α = β = γ = 90.00о. 

X-ray diffraction analysis of CTA nanofibers showed (Fig. 2 (2b and 3b)) that there are regions of co-

herent scattering at the angles of 2 = 1015о and 2025о. During the electrospinning process, CTA macro-

molecules organize well-ordered structures, so CTA-NF-1 and CTA-NF-2 nanofibers have a higher crystal 

index (in the range of 41–46 %) than CTA (Table 1). 

 

 
 a b 

Figure 2. X-ray diffraction patterns of LRC (a), CTA (b, line 1), CTA-NF-1 (b, line 3) and CTA-NF-2 (b, line 2) 

T a b l e  1  

Structural parameters of LRC, CTA, CTA-NF-1 and CTA-NF-2 

Sample 

Miller  

indices  

hkl 

2θ, deg. 
d-spacing, 

Å 
FWHM, ° 

Crystallite size 

τ, Å 
CrI, % 

Unit cell size, Å 

а b c 

1 2 3 4 5 6 7 8 9 10 

LRC 

1-10 14.92 5.93 1.92 43 

63 7.81 8.17 10.35 110 16.40 5.39 1.62 52 

102 20.69 4.28 1.40 60 



Characterization Electrospun Nanofibers … 

ISSN 2959-0663 (Print); ISSN 2959-0671 (Online); ISSN-L 2959-0663 25 

C o n t i n u a t i o n  o f  T a b l e  1  

1 2 3 4 5 6 7 8 9 10 

LRC 

200 22.76 3.90 1.44 58 

63 7.81 8.17 10.35 
103 29.00 3.00 8.00 11 

113 30.96 2.88 1.83 47 

004 34.62 2.58 0.99 87 

CTA 

020 9.56 9.25 5.20 16 

36 5.64 20.36 4.58 

100 17.01 5.21 3.00 30 

001 18.69 4.75 10.60 8 

150 29.30 3.05 17.90 5 

022 39.06 2.0 28.00 3 

CTA-NF-1 

100 15.02 5.90 3.90 22 

46 6.07 16.04 5.34 

021 20.12 4.41 4.40 19 

130 22.16 4.01 2.16 39 

140 26.63 3.35 7.90 11 

022 35.92 2.49 11.10 8 

CTA-NF-2 

020 10.01 8.83 4.75 17 

41 3.19 18.09 5.50 

001 16.48 5.38 6.89 12 

011 17.08 5.18 0.26 325 

031 22.24 3.99 3.70 23 

100 28.43 3.13 0.32 271 

 

The thermal properties of the LCR, CTA, CTA-NF-1 and CTA-NF-2 were studied with TGA (Fig. 3). 

The weight loss for all investigated samples proceeds in three stages. In the initial stage, occurring at lower 

temperatures (up to 120 °C), the weight loss (5–9 %) is primarily attributed to the release of adsorbed water 

(moisture) [5, 22]. 

 

 
a 
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c 
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d 

Figure 3. TG, DTG and DSC thermograms of LRC (a), CTA (b), CTA-NF-1 (c) and CTA-NF-2 (d) 

The weight loss was not observed in the CTA, CTA-NF-1, and CTA-NF-2 over the temperature range 

from 40 °C to 120 °C, indicating that the CTA fibers are more hydrophobic than the LRC. On the weight-

loss stage, which took place between 218 and 580 °C, the esterified chains of cellulose acetate are degraded 

first (in the range of 280–312 °C for CTA, 260–305 °C for CTA-NF-1, 219-280 °C for CTA-NF-2), and then 

the cеllulosе chаin undеrgоеs the depolymerization process, resulting in the formation of carbon residue [18, 

23]. The оnset and end thermal degradation temperature of LRC (157–476 °C) are lоwer than those of the 

CTA (280–580 °C), CTA-NF-1 (260–560 °C) and CTA-NF-2 (218–571 °C). Moreover, the maximum 

weight loss rate peak of LCR is also lower, than the CTA, CTA-NF-1 and CTA-NF-2 which were 314 °C, 

353 °C, 347 °C and 348 °C, respectively. The CTA and nanofibers show higher thermal stability and a wider 

range of degradation than the cellulose material, which was also shown in the work [24]. 

In electrospinning, along with such important parameters as the solution viscosity, the distance between 

the needle tip and the ground electrode, acceleration voltage, etc., the nature of solvent also plays an im-

portant role in the formation of nanofibers. The electrospinning of cellulose аcetate in аcetone was found to 

produce a short fibres or a “beads on the string” morphology. The rаpidevаporation of solvent аnd the gela-

tion of cellulose acetate solution, which clog the needle, are the causes of beading [25]. In order to solve this 

problem a new solvent system was used where ultrafine cellulose acetate fibers were successfully prepared 

via electrospinning of cellulose acetate in a mixed solvent of acetone/water at water contents of 10–

15 wt % [26]. 

In our investigation, we used two binary mixed solvent systems: methylene chloride:ethanol and chloro-

form:acetone. The solvent system influences the solution properties and directly impacts the morphology and 

diameter of the resulting nanofibers. Being highly volatile the solvents used evaporated quickly during elec-

trospinning, leading to the formation of thinner nanofibers. On the other hand, solvents with lower volatility 

may result in thicker fiber formation. Additionally, the choice of solvent system affects the drying kinetics 

and the solidification process of the electrospun fibers, which further influences their morphology, such as 

bead formation, uniformity, and alignment. Figure 4 displays SEM images of CTA-NF-1 and CTA-NF-2 

nanofibers. The CTA-NF-1 nanofibers have a long uniform with a parallel grooved morphology, smooth sur-

faces, and few defects, and their size varies in the range of 200–700 nm. The grooved structure of nanofibers 

can be attributed to using solvents with different boiling temperatures in the mixed solvent system. Nano-
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fibres with a similar surface texture were also formed from cellulose acetate butyrate solutions using a sol-

vent mixture of acetone and N,N′-dimethylacetamide, and the authors explained this effect that there must be 

sufficient differences in the evaporation rate between the two solvents to initiate groove formation. It was 

discovered that the rapid evaporation of a highly volatile solvent from the polymer solution was crucial in the 

creation of surface voids, whereas the high viscosity of the residual solution after the solvent evaporation 

ensured the line surface to be formed following solidification [27]. 

 

      
 a b 

Figure 4. SEM images of CTA-NF-1 (a) and CTA-NF-2 (b) nanofibers 

The CTA-NF-2 nanofibers, ranging in size from 200 nm to 4 mkm, have a flat ribbon shape with two 

tubes (dumbbell shape) (Fig. 4, b), and it is related to the formation of the skin layer during electrospinning, 

which subsequently collapsed. Such ribbons have been formed by electrospinning various polymers [28]. 

The formation of this shape of nanofibers is associated with several parameters of the electrospinning pro-

cess: the polymer molecular weight, the polymer solution concentration, the solution feed rate, the nature of 

the solvent, etc. [29–31]. Ribbon-like or flat nanofibres are produced while electrospinning with a more vola-

tile solution [32-33]. The rapid vaporization of solvent results in the formation of a stable skin layer, as men-

tioned above, and the collapse of thin walls in the middle section of fibre, but this is insufficient to avoid ma-

terial buildup at its sides [28]. 

Differences in capillary-porous structure parameters among LRC, CTA and CTA nanofibers can have 

significant implications for their respective applications in sorption studies. Sorption studies of the LCR, 

CTA, CTA-NF-1 and CTA-NF-2 using low molecular weight liquids (water) were carried out, and the capil-

lary-porous structure parameters (monolayer capacity (Хm), specific surface area (S), total pore volume(Wo), 

average pore radius (r)) of the samples were calculated based on isotherms of water vapour sorption (Ta-

ble 2). 

T a b l e  2  

Sorption characteristics of samples 

Sample LRC CTA CTA-NF-1 CTA-NF-2 

Хm, g/g 0.021 0.0036 0.0039 0.0081 

S, m2/g 86.0 12.83 13.89 28.94 

Wo, сm3/g 0.097 0.016 0.017 0.030 

r, Å 45.5 16,76 18.56 24.12 
Result presented as mean ±0.04 % standard deviation, n = 3 

 

The sorption process is a complex mechanism where several factors (capillary-porous, crystalline, su-

pramolecular structure, content of non-cellulose substances) are simultaneously applied to the sorption kinet-

ics. With its natural cellulose structure, LRC may exhibit high sorption capacity for water and other polar 

solvents due to its abundant hydroxyl (–OH) groups. The presence of hydroxyl groups in LRC provides op-

portunities for selective sorption of polar molecules or ions through hydrogen bonding and other interac-

tions [8]. In case of CTA and nanofibers based on it, the parameters of the capillary-porous structure de-
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crease in the series: CTA-NF-2 > CTA-NF-1 > CTA. The acetylation of cellulose in CTA reduces the num-

ber of hydroxyl groups available for sorption, resulting in lower sorption capacity compared to LRC. CTA 

nanofibers offer enhanced surface area and porosity compared to CTA, potentially leading to increased sorp-

tion capacity. Nanofibrous structures of CTA-NF-1 and CTA-NF-2 may exhibit faster sorption kinetics com-

pared to CTA due to their high surface area and short diffusion pathways. The high surface-to-volume ratio 

of nanofibers can promote efficient sorption and adsorption of target molecules, making them suitable for 

applications such as filter material, adsorber, and sensing material. 

Conclusions 

The cellulose was extracted from licorice root waste and cellulose triacetate was successfully synthe-

sized from licorice cellulose based on esterification method. In order to prepare cellulose nanofibers, the 

electrospinning has been studied using various solvent systems. In this study, a mixed solvent of methylene 

chloride/ethanol and chloroform/acetone were developed as a new solvent system for the electrospinning of 

CA nanofibers. The structural characteristics and morphology of LRC, CTA, CTA-NF-1 and CTA-NF-2 

were investigated by the XRD, FT-IR, TGA, SEM, and compared. It was shown that the structure, proper-

ties, shape and size of nanofibers depend on using the solvent mixture. To the best of our knowledge, this is 

the first study reporting the formation nanofibers based on CTA, synthesized from licorice root cellulose. 

Such CTA nanofibers would be interesting for applications such as filtration materials due to their large sur-

face area. 
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A New Method for Obtaining Carboxylic Derivatives  

of Oxazolo[5,4-b]pyridine Based on 3-Aminopyridine-2(1H)-ones 

Current methods for synthesis of oxazolo[5,4-b]- and oxazolo[4,5-b]pyridines have several limitations, such 

as severe reaction conditions, lengthy reaction times, low yields and concurrent formation of side reaction 

products. This article presents the results of study focused on a one-step method for the synthesis of new de-

rivatives of oxazolo[5,4-b]pyridine incorporating an aliphatic carboxylic group as a linker. During the inves-

tigation of acylation reactions of 3-aminopyridine-2(1H)-ones with cyclic anhydrides of dicarboxylic acids 

(succinic, maleic and glutaric), it was found that the monoamides formed at the initial stage undergo intramo-

lecular cyclization yielding derivatives of oxazolo[5,4-b]pyridine. Subsequently, the reaction conditions were 

studied and optimized to achieve the target compounds with high yield and purity. The potential anti-

inflammatory activity of the obtained derivatives of oxazolo[5,4-b]pyridine was evaluated by molecular dock-

ing method using AutoDock Vina software. Compounds 11-14b exhibited higher binding affinity with the se-

lected target protein Prostaglandin synthase-2 (1CX2) compared to the reference anti-inflammatory drug di-

clofenac. Thus, taking into account the results of in silico analyses, the newly synthesized oxazolo[5,4-

b]pyridine derivatives based on 3-aminopyridine-2(1H)-ones are promising candidates for further investiga-

tion of their potential anti-inflammatory activity through in vivo methods. 

Keywords: 3-aminopyridin-2(1H)-ones, oxazolo[5,4-b]pyridines, oxazolo[4,5-b]pyridines, intramolecular 

heterocyclization, biological activity, anti-inflammatory activity, molecular docking. 

 

Introduction 

Over the past decade, the interest of scientists in oxazolo[5,4-b]- and oxazolo[4,5-b]pyridines has in-

creased due to their application in various areas of chemistry and a wide range of biological activities, in-

cluding antimicrobial, anticancer, anti-inflammatory, analgesic, herbicidal, antioxidant, anticoagulant, and 

antidiabetic activities (Fig. 1) [1–9]. Recently, modulators of calcium channel activity have been discovered 

within this class [10]. Some derivatives of oxazolopyridines exhibit activity comparable to phenylbutazone 

or indomethacin, but without causing gastrointestinal irritation, which is commonly associated with many 

acidic anti-inflammatory compounds [11]. Preclinical studies on human and animal cell lines have shown 

that oxazolopyridines are generally non-toxic [12]. Furthermore, these compounds meet the criteria for po-

tential drug candidates due to their lack of asymmetric carbon atoms and low molecular weight, which ad-

here to Lipinski's rule of five [13]. 
 

 

Figure 1. Examples of biologically active oxazolopyridines 
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However, only a limited number of synthetic strategies exist for the synthesis of 2-substituted oxazo-

lo[5,4-b]- and oxazolo[4,5-b]pyridines [14–19]. One such approach involves the reaction of halogenated 

aminopyridine derivatives with trimethylsilyl polyphosphate ether or polyphosphoric acid [4]. Another 

commonly employed method entails the condensation of 2- or 3-aminohydroxypyridines with carboxylic 

acid derivatives under acidic conditions using such agents as boric acid, aromatic carboxylic acids and poly-

phosphoric acid at elevated temperatures [20] (Scheme 1). 

 

 

Scheme 1. Formation of oxazolo[5,4-b]- and oxazolo[4,5-b]pyridines derivatives 3,6 

Mainly, oxazolo[5,4-b]pyridine 3 obtained based on unsubstituted N-(2-hydroxypyridin-3-yl)benz-

amides 2 are described in the literature, particularly for amides of aromatic, rather than aliphatic acids [21]. 

Examples of 5,7-disubstituted and 2-alkyl-substituted oxazolo[5,4-b]pyridines syntheses are presented in the 

literature only in isolated cases [22–24]. 

Continuing our study on the modification of 3-amino-pyridin-2(1H)-ones, derivatives of which exhibit 

high antiradical, neurotropic, antidiabetic, hemorheological, and cytoprotective activity [25‒30], we obtained 

corresponding oxazolo[5,4-b]pyridines using a general Scheme 2, by reacting phosphorus oxychloride with 

previously obtained chloroacetamide 8a or benzamide 8b. 

 

 

Scheme 2. Intramolecular cyclization of chloroacetamide 8a or benzamide 8b  

under the action of POCl3 into the corresponding oxazolo[5,4-b]pyridines 9a, b 

Additionally, the obtained 2-(chloromethyl)oxazolo[5,4-b]pyridine 9a served as a very effective 

synthon for obtaining various N-substituted derivatives through the reaction of nucleophilic substitution of 

the chlorine atom with various N-nucleophiles, including natural alkaloids [31]. 

However, existing synthetic methods for the production of oxazolo[5,4-b]- and oxazolo[4,5-b]pyridines 

have a number of limitations, including harsh reaction conditions, long reaction time, low yields of target 

products and simultaneous formation of by-products. Therefore, the development of new methods for obtain-

ing oxazolo[5,4-b]pyridines and/or optimization of existing methods is an urgent task. 

Experimental 

Materials 

The obtained compounds were analyzed on an Agilent 1260 Infinity II chromatograph connected to an 

Agilent 6545 LC/Q-TOF high-resolution mass spectrometer equipped with an AJS ESI dual ion source oper-

ating in positive ion mode. Mass spectra with LC/MS precision were obtained in the range of 100–1000 m/z, 

at a scan rate of 1.5 spectra per second. 



Palamarchuk, I.V., & Kulakov, I.V.  

34 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 2(114) 

The chromatographic separation was carried out using ZORBAX RRHD Eclipse Plus C18 columns 

(2.1×50 mm, particle size 1.8 µm). The column temperature was kept at 35 °C during the analysis. The mo-

bile phase consisted of eluents A and B. For positive ionization mode, eluent A was a 0.1 % formic acid so-

lution in deionized water, and eluent B was a 0.1 % formic acid solution in acetonitrile. The chromatographic 

separation was achieved with the following elution gradient: 0–10 min with 95 % A, 10–13 min with 100 % 

B, and 13–15 min with 95 % A. The mobile phase flow rate was maintained at 400 μL/min throughout the 

analysis. A sample injection volume of 1 μL was used in all experiments. The sample was prepared by dis-

solving the entire sample (in 1000 μL) in methanol for HPLC analysis. Sample dilution was performed im-

mediately before analysis. 

The recorded data were processed using Agilent MassHunter 10.0 software. 

The 1H and 13C NMR spectra in DMSO-d6 solutions were recorded on Bruker AVANCE 500 

(500 MHz, 125 MHz) and Magritek spinsolve 80 carbon ultra (81 MHz, 20 MHz) spectrometers. 

Melting points of synthetic compounds were determined on a Stuart SMP10 hot bench. All reactions 

were monitored by thin-layer chromatography (TLC) and identified by UV or iodine vapor. 

3-Aminopyridine-2(1H)-ones were prepared according to a similar literature procedure [30]. 

Synthesis and Spectral Analysis of Synthesized Compounds 

The synthesis of oxazolo[5,4-b]pyridine derivatives 11-14a-c involved heating a mixture of 1 mmol of 

3-amino-pyridin-2-(1H)-one and 5 mmol of the corresponding anhydrides (succinic, maleic, glutaric, phthal-

ic anhydrides) in 5 mL of acetic acid at reflux temperature with vigorous stirring for 10 hours. The mixture 

was then cooled and poured into 25 mL of water. The resulting precipitates were filtered and recrystallized 

from a mixture of hexane, 2-propanol, and dichloromethane. 

3-(5,7-Dimethyloxazolo[5,4-b]pyridin-2-yl)propanoic acid 11a. Yield: 0.116g (53 %), grey crystals, 

M.p.: 270–272°С. 
1H NMR spectrum (500 MHz, DMSO-d6), δ ppm: 1.89 (s., 3Н, СН3); 2.16 (s., 3Н, СН3); 2.81 (d., 4Н, 

СН2-СН2); 5.98 (s., 1Н, Н-6); 11.85 (br.s., 1Н, ОН). 
13C NMR spectrum (125 MHz, DMSO-d6), δ ppm: 17.2 (СН3); 18.3 (СН3); 28.4 (2С CH2-CH2); 106.3 

(C-6); 118.0; 145.2; 150.2; 158.8; 176.5 (2С). 

HRMS m/z: calcd for C11H13N2O3
+ [M + H]+: 221.0921; found: 221.0935. 

3-(5-methyl-7-phenyloxazolo[5,4-b]pyridin-2-yl)propanoic acid 11b. Yield: 0.182 g (64 %), grey 

powder, M.p.: 280–281°С. 
1H NMR spectrum (500 MHz, DMSO-d6), δ ppm: 2.25 (s., 3Н, СН3); 2.57 (d.d., 2Н, СН2СО); 2.76 

(d.d., 2Н, СН2); 6.13 (s., 1Н, Н-6); 7.21 (m., 2Н, Н-2,6 Ph); 7.40 (m., 3Н, Н-3,4,5 Ph); 12.20 (br.s., 1Н, 

ОН). 
13C NMR spectrum (125 MHz, DMSO-d6), δ ppm: 18.6 (СН3); 28.2 (2С CH2-CH2); 105.6 (C-6); 116.6; 

126.8 (2C Ph); 128.6 (2C Ph); 130.0 (C Ph); 136.1; 146.6; 152.3; 159.2; 176.8 (2С). 

HRMS m/z: calcd for C16H15N2O3
+ [M + H]+: 283.1077; found: 283.1075. 

3-(5-methyl-7-(thiophen-2-yl)oxazolo[5,4-b]pyridin-2-yl)propanoic acid 11с. Yield: 0.165 g (57 %), 

grey powder, M.p.: 327‒329°С. 
1H NMR spectrum (500 MHz, DMSO-d6), δ ppm: 2.25 (s., 3Н, СН3); 2.84-2.92 (m., 4Н, СН2-СН2); 

6.57 (s., 1Н, Н-6); 7.17 (d.d., 3J=5.1 Hz, 4J=3.9 Hz, 1Н, Н-4 thiophen); 7.63 (d.d., 3J=3.9 Hz, 4J=1.0 Hz, 1Н, 

Н-3 thiophen); 7.74 (d.d., 3J=5.1 Hz, 4J=1.0 Hz, 1Н, Н-5 thiophen); 12.05 (br.s., 1Н, ОН). 
13C NMR spectrum (20 MHz, DMSO-d6), δ ppm: 18.6 (СН3); 28.7 (2С CH2-CH2); 103.0 (C-6); 114.2; 

127.8 (С thiophen); 129.7 (С thiophen); 130.4 (С thiophen); 135.6; 143.3; 145.9; 159.3; 176.9 (2C). 

HRMS m/z: calcd for C14H13N2O3S+ [M + H]+: 289.0641; found: 289.0648. 

(E)-3-(5,7-dimethyloxazolo[5,4-b]pyridin-2-yl)acrylic acid 12a. Yield: 0.111g (51 %), white crystals, 

M.p.: 215-218°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 1.93 (s., 3H, CH3); 2.17 (s., 3H, CH3); 6.00 (s, 1H, H-

6); 7.18 (s., 2H, 2-CH=CH); 11.86 (s., 1H, OH). 
13C NMR spectrum (125 MHz, DMSO-d6), δ ppm: 17.3 (CH3); 18.3 (CH3); 106.4 (C-6); 135.1 (4C); 

145.4; 151.4; 159.3; 170.0. 

HRMS m/z: calcd for C11H11N2O3
+ [M + H]+: 219.0764; found: 219.0768. 

(E)-3-(5-methyl-7-phenyloxazolo[5,4-b]pyridin-2-yl)acrylic acid 12b. Yield: 0.216g (77 %), white 

crystals, M.p.: 282‒284°С. 
1H NMR spectrum (500 MHz, DMSO-d6), δ ppm: 2.26 (s., 3Н, СН3); 6.16 (s., 1Н, Н-6); 7.07 (s., 2Н, 

Н-2,6 Ph); 7.21 (d.d., J=7.5, 2.0, 2H, CH=CH); 7.36-7.39 (m., 3Н, Н-3,4,5 Ph); 12.23 (br.s., 1Н, ОН). 
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13C NMR spectrum (125 MHz, DMSO-d6), δ ppm: 18.6 (CH3); 105.8 (C-6); 115.4; 126.9 (2C Ph); 

128.6 (2C Ph); 129.0; 135.3 (CH=CH); 136.2; 164.8; 153.7; 159.9; 170.4 (2C). 

HRMS m/z: calcd for C16H13N2O3
+ [M + H]+: 281.0921; found: 281.0919. 

(E)-3-(5-methyl-7-(thiophen-2-yl)oxazolo[5,4-b]pyridin-2-yl)acrylic acid 12с. Yield: 0.152g (53 %), 

beige crystals, M.p.: 315-316°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 2.26 (s., 3H, CH3); 6.62 (s., 1H, H-6); 7.18 (t., 1H, 

J=5.1 Hz, H-4 thiophen); 7.30 (s., 2H, 2-CH=CH); 7.67-7.76 (m., 2H, H-3,5 thiophen); 12.05 (s., 1H, OH). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 18.6 (CH3); 102.8 (C-6); 127.8 (1C thiophen); 129.9 

(1C thiophen); 130.8 (1C thiophen); 135.4; 135.9 (4C); 144.5; 146.2; 159.9; 170.5. 

HRMS m/z: calcd for C14H11N2O3S+ [M + H]+: 287.0485; found: 287.0490. 

4-(5,7-Dimethyloxazolo[5,4-b]pyridin-2-yl)butanoic acid 13a. Yield: 0.110g (47 %), white crystals, 

M.p.: 236–239°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 1.82 (s., 3H, CH3); 1.90-1.98 (m., 2H, 3-CH2); 2.13 

(s., 3H, CH3); 2.70 (t., J=5.7 Hz, 4H, 4,2-CH2); 5.91 (s., 1H, H-6); 11.67 (s., 1H, OH). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 17.1 (CH3); 18.2 (CH3); 32.2 (3C 2,3,4-СН2); 106.2 

(C-6); 121.4; 143.9; 148.7; 159.1; 171.9 (2C). 

HRMS m/z: calcd for C12H15N2O3
+ [M + H]+: 235.1077; found: 235.1081. 

4-(5-Methyl-7-phenyloxazolo[5,4-b]pyridin-2-yl)butanoic acid 13b. Yield: 0.166 g (56 %), white 

crystals, M.p.: 312‒314°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 1.43-1.87 (m., 2H, 3-CH2); 2.23 (s., 3Н, СН3); 2.49-

2.64 (m., 4H, 4,2-CH2); 6.05 (s., 1Н, Н-6); 7.17 (d., J=3.1 Hz, 2Н, Н-2,6 Ph); 7.35 (br.s., 3Н, Н-3,4,5 Ph); 

12.00 (br.s., 1Н, ОН). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 18.4 (CH3); 32.2 (3C 2,3,4-СН2); 105.4 (C-6); 120.2; 

126.7 (2С Ph); 128.4 (2С Ph); 128.6; 136.5; 145.1; 150.8; 159.3; 172.2 (2C). 

HRMS m/z: calcd for C17H17N2O3
+ [M + H]+: 297.1234; found: 297.1230. 

4-(5-Methyl-7-(thiophen-2-yl)oxazolo[5,4-b]pyridin-2-yl)butanoic acid 13с. Yield: 0.157 g (52 %), 

white crystals, M.p.: 299‒302°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 1.90-2.06 (m., 2H, 3-CH2); 2.22 (s., 3Н, СН3); 2.73 

(t., J=6.0 Hz, 4H, 4,2-CH2); 6.49 (s., 1Н, Н-6); 7.14 (d.d., 3J=5.0 Hz, 4J=3.8 Hz, 1Н, Н-4 thiophen); 7.55-

7.60 (m., 1Н, Н-3 thiophen); 7.67-7.73 (m., 1Н, Н-5 thiophen); 12.85 (br.s., 1Н, ОН). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 17.1 (CH3); 32.9 (3C 2,3,4-СН2); 106.2 (C-6); 118.9; 

127.9 (С thiophen); 129.6 (С thiophen); 130.3 (С thiophen); 136.6; 142.4; 144.9; 159.9; 172.7 (2C). 

HRMS m/z: calcd for C15H15N2O3S+ [M + H]+: 303.0798; found: 303.0801. 

2-(5,7-Dimethyloxazolo[5,4-b]pyridin-2-yl)benzoic acid 14a. Yield: 0.161 g (60 %), light brown 

crystals, M.p.: 302–305°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 2.00 (s., 3Н, CH3); 2.20 (s., 3Н, СН3); 6.05 (s., 1Н, 

Н-6); 7.92 (br.s., 4Н, Н-3,4,5,6 Ar); 11.96 (br.s., 1Н, ОН). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 17.5 (CH3); 18.4 (CH3); 106.5 (C-6); 117.2; 123.5 

(3С); 131.6; 134.8 (3С); 145.6; 151.4; 159.3; 166.9. 

HRMS m/z: calcd for C15H13N2O3
+ [M + H]+: 269.0921; found: 269.0930. 

2-(5-Methyl-7-phenyloxazolo[5,4-b]pyridin-2-yl)benzoic acid 14b. Yield: 0.225 g (68 %), light 

brown powder, M.p.: 312–314°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 2.29 (s., 3Н, СН3); 6.21 (s., 1Н, Н-7); 7.30 (br.s., 5Н, 

Н-2,3,4,5,6 Ph); 7.88 (br.s., 4Н, Н-3',4',5',6' Ar); 12.31 (br.s., 1Н, ОН). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 18.6 (CH3); 105.8 (C-6); 115.8; 123.6 (3С); 126.8 

(3С); 128.6 (3С); 128.9; 131.2; 135.0; 136.2; 146.9; 153.5; 159.6; 167.4. 

HRMS m/z: calcd for C20H15N2O3
+ [M + H]+: 331.1077; found: 331.1085. 

2-(5-Methyl-7-(thiophen-2-yl)oxazolo[5,4-b]pyridin-2-yl)benzoic acid 14c. Yield: 0.209g (62 %), 

gray crystals, M.p.: 341–343°С. 
1H NMR spectrum (80 MHz, DMSO-d6), δ ppm: 2.29 (s., 3Н, СН3); 6.67 (s., 1Н, Н-6); 7.14 (d.d., 

3J=5.0 Hz, 4J=3.8 Hz, 1Н, Н-4 thiophen); 7.60-7.69 (m., 2H, H-3,5 tiophene); 7.97 (br.s., 4Н, Н-3,4,5,6 Ar); 

12.45 (br.s., 1Н, ОН). 
13C NMR spectrum (21 MHz, DMSO-d6), δ ppm: 18.7 (CH3); 102.9 (C-6); 113.5; 123.8; 127.8; 128.4; 

130.01; 130.8; 130.9; 131.7; 132.8; 135.3; 135.5; 144.5; 146.4; 159.9; 167.5; 168.7. 

HRMS m/z: calcd for C18H13N2O3S+ [M + H]+: 337.0641; found: 337.0638. 
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Molecular Docking 

Molecular docking is a method used to predict the optimal position of a ligand relative to a protein recep-

tor to form a stable complex [32]. This method takes into account scoring functions and allows the estimation 

of binding strength or affinity between a ligand and a protein. Molecular docking is commonly used to predict 

how potential drug compounds may bind to target proteins, allowing their effectiveness and binding strength to 

be assessed. This technique is essential for the design and development of pharmaceuticals [33]. 

The main goal of molecular docking is computer modeling of the molecular identification process and 

achieving optimal conformation with minimal free energy of the entire system. The discovery of a new drug 

is a complex task, and modern approaches are mainly based on the in silico approach. The use of computer 

technologies in the discovery and development of drug compounds is becoming increasingly popular and 

recognized. Therefore, molecular docking plays a key role in the search for new pharmacologically active 

compounds in medical science, and its utility is leveraged in the field of structure-based drug design and bio-

chemical investigations. 
The docking procedure was performed using AutoDock Vina software [34]. Ligand molecules were de-

signed using ChemBio3D Ultra 14.0 software, and 3D protein structures were obtained from the Protein Data 

Bank (RCSB) [35]. Before docking, the protein structures underwent preparation steps, including removing 

native ligands and water molecules, addition of polar hydrogen atoms, and conversion of the structures 

to.pdbqt format using AutoDock MGL software package [36]. For the enzyme COX-1 (PDB: 1EQG), the 

active site grid coordinates (X=29.29, Y=34.10, Z=199.90; 19.61 × 15.10 × 18.40 Å3) were specified, and for 

the enzyme COX-2 (PDB: 1CX2), the active site grid coordinates (X=24.25, Y=20.06, Z=16.66; 

17.26×14.75×15.26 Å3) were provided. The ligands interactions within the binding sites were examined us-

ing Discovery Studio Visualizer software [37]. 

Results and Discussion 

Chemistry 

Сyclic anhydrides of dicarboxylic acids were chosen to study new cases of the cyclization reaction of 

amide derivatives of 3-aminopyridin-2(1H)-ones into the corresponding oxazolo[5,4-b]pyridines. It was as-

sumed that monoamides containing a carboxylic linker fragment could be synthesized through the acylation 

of 3-aminopyridine-2(1H)-ones 7a-c with cyclic anhydrides of dicarboxylic acids (Scheme 4). Activation of 

the carboxyl group followed by aminolysis of 3-aminopyridine-2(1H)-one may lead to the formation of dia-

mides from the respective acids, which can efficiently cyclize to produce the corresponding bisderivatives of 

oxazolo[5,4-b]pyridine. 

For this purpose, we carried out the reaction of 3-aminopyridones 7a-c with succinic anhydride accord-

ing to Scheme 3. The reaction was carried out by refluxing in acetic acid using a slight excess (1.5 equiv.) of 

succinic anhydride. Analysis of the reaction mixture by thin-layer chromatography showed the presence of 

unreacted starting 3-aminopyridine-2(1H)-one. To increase the conversion of the starting 3-aminopyridine-

2(1H)-one into the desired product, we gradually added an additional excess of succinic anhydride to the re-

action mixture. The optimal amount of succinic anhydride added to the reaction until the complete disap-

pearance of the starting 3-aminopyridine-2(1H)-one was 5 equiv. 

 

 

Scheme 3. Сyclization reaction of 3-aminopyridones 7a-c with 5 equiv of succinic anhydride  

into oxazolo[5,4-b]pyridine 11a-c 

Analysis of the isolated product of the reaction of aminopyridone 11b with succinic anhydride by high-

resolution mass spectrometry showed that the target product had a molecular ion peak not at [M+] = 

300.3140, as expected for the monoamide 10b, but at [M+] = 282.3573, i.e., 18 a.m.u. lower, indicating the 
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loss of one water molecule. Based on this, we hypothesized that under the excess anhydride conditions, the 

monoamide part underwent cyclization to form the corresponding oxazolopyridine 11b. 

The formation of oxazolopyridine 11b was unambiguously confirmed by 1H and 13C NMR spectral 

analysis, which showed the absence of the amide NH proton singlet in the spectrum. A slight shift was ob-

served for the H-5 proton, registering from 5.98 ppm in the starting 3-aminopyridone 11a to 6.13 ppm, indi-

rectly confirming the aromatization of the condensed pyridine ring. The spectrum also showed characteristic 

multiplets as two doublets of doublets of two aliphatic methylene groups at 2.57 ppm and 2.76 ppm. The 

acidic proton of the carboxyl OH group appeared as a singlet at 12.20 ppm. Similar reactions took place be-

tween 3-aminopyridones 11a-c and maleic and glutaric anhydrides. 

In order to expand the arsenal of new derivatives of oxazolo[5,4-b]pyridine and verify their synthesis 

using cyclic anhydrides of dicarboxylic acids, we carried out a similar intramolecular heterocyclization of 

3-aminopyridine-2(1H)-ones with a five-fold excess of maleic and glutaric anhydrides (Scheme 4). 
 

 

Scheme 4. Cyclization reaction of 3-aminopyridones 7a-c with 5 equiv. of maleic or glutaric anhydride  

into the corresponding oxazolo[5,4-b]pyridine 12-14a-c 

The structure of all obtained compounds 11-14a-c was confirmed by 1H and 13C NMR spectroscopy and 

high-resolution mass spectrometry. 

Apparently, the monoamide formed at the first stage under the excess anhydride, which acts as an effec-

tive dehydrating agent in this case, undergoes intramolecular cyclization as follows (Scheme 5). In this case, 

intramolecular nucleophilic addition of the hydroxyl group of the lactim form of pyridone to the amide car-

bonyl with subsequent elimination of water occurs. 
 

 

Scheme 5. The proposed reaction mechanism 
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It is worth noting that only one example of a similar method for obtaining unsubstituted oxazolo[4,5-

b]pyridine 15 is given in the literature, based on the cyclization reaction of 2-amino-3-hydroxypyridine with 

benzoic anhydride (Scheme 6) [38, 32]. 

 

 

Scheme 6. Cyclization reaction of 2-amino-3-hydroxypyridine with benzoic anhydride into oxazolo[4,5-b]pyridine 15 

Thus, the reaction we discovered between 3-aminopyridones and dicarboxylic acid anhydrides leads to 

a one-step cyclization into oxazolo[5,4-b]pyridines 11-13a-c with an acidic carboxylic linker. This transfor-

mation not only improves the water solubility of the compounds for bioassays but also facilitates additional 

structural modifications. 

Molecular Docking 

The literature contains data confirming the anti-inflammatory activity of oxazolopyridines [11]. There-

fore, molecular docking was used to evaluate presumed anti-inflammatory activity and understand the mo-

lecular interactions between synthesized ligand molecules and target proteins. 

The enzyme COX-1 (PDB: 1EQG) [39] and enzyme COX-2 (PDB: 1CX2) [40] were chosen as target 

proteins and Diclofenac was chosen as a well known anti-inflammatory reference drug. Cyclooxygenases 

(COX), also known as prostaglandin-endoperoxide synthases, are pivotal enzymes that are essential for the 

biosynthesis of prostaglandins, critical molecules involved in regulating inflammation, pain, and fever. The 

body houses two primary isoforms of these enzymes — cyclooxygenase-1 (COX-1) and cyclooxygenase-2 

(COX-2). COX-1 is primarily responsible for the production of key signaling molecules such as prostaglan-

dins, prostacyclin, and thromboxanes, contributing to processes related to pain sensitivity, blood clotting, and 

gastric mucosal protection [41]. Conversely, COX-2 is primarily involved in transmitting pain signals during 

inflammatory conditions and plays a significant role in prostaglandin synthesis within inflammatory cells and 

the central nervous system [42]. 

The docking results showed that for the studied structures, the binding affinity with the selected protein 

receptors was slightly higher than the binding affinity of these proteins with diclofenac, chosen as a reference 

drug (Table 1). 

T a b l e  1  

Binding affinity (kcal/mol) of oxazolo[5,4-b]pyridine derivatives 12-14a-c and diclofenac  

in the active site of COX-1 (PDB: 1EQG) and COX-2 (PDB: 1CX2) proteins 

Ligand 

Receptor 
Diclofenac 11a 11b 11c 12a 12b 12c 13a 13b 13c 14a 14b 14c 

1EQG –8.4 –7.5 –7.9 –7.4 –7.3 –6.3 –5.6 –7.5 –7.9 –7.3 –9.1 –6.6 –6.4 

1CX2 –8.1 –7.7 –9.4 –8.7 –8.2 –9.7 –9.2 –8.0 –9.6 –8.8 –9.1 –9.8 –9.0 

 

As can be seen in Table 1, compounds 11‒14b exhibited the highest binding energy values with the 

1CX2 receptor protein, so we further described its interaction in more detail (Table 2). 

The interaction of compound 11b with the enzyme cyclooxygenase-2 (COX-2) (PDB: 1CX2) has a 

higher binding affinity of –9.4 kcal/mol. This is explained by the formation of one carbon-hydrogen bond 

and three hydrogen bonds between the oxygen atom of the oxazole ring and the hydrogen atom of the car-

boxyl group oxygen of compound 11b and the amino acid residues LEU352, HIS90, SER353, respectively. 

The oxazolopyridine and phenyl rings also form six π-Alkyl interactions with amino acids VAL523, 

LEU352, ALA527, and VAL349. Additionally, compound 2 forms van der Waals interactions with residual 

amino acids SER530, TRP387, TYR348, LEU359, TYR355, ARG120, ARG513, PHE518 (Fig. 2). 
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T a b l e  2  

Basic hydrogen bonds and acid interactions of oxazolo[5,4-b]pyridine derivatives 11-14и  

with the COX-2 (PDB: 1CX2) protein  

Compound Receptor H-Hydrogen bonds 

Residual Amino acid Interactions 

Amide-Pi Stacked / Pi-Sulfur/ Pis 

interactions/ Pi-Pi Stacked/Pi-

Anion/ Pi-Pi T-shaped/Pi-Alkyl/ 

Van-der Walls interactions 

11b 

1CX2 

SER353, LEU352, 

HIS90 

VAL523, VAL349, ALA527, 

LEU531, LEU352 

SER530, TRP387, TYR348, 

LEU359, TYR355, ARG120, 

ARG513, PHE518 

12b 
TYR355, GLN192, 

HIS90, SER353 

LEU352, VAL349, ALA527, 

VAL523, LEU531 

LEU359, SER530, TRP387, 

TYR348, ARG513, PHE518, 

ALA516, ILE517, ARG120 

13b 
TYR355, HIS90, 

SER353 

LEU352, VAL349, ALA527, 

VAL523, LEU531 

LEU359, ARG120, SER530, 

TRP387, TYR348, ARG513, 

PHE518 

14b SER530 

LEU352, VAL349, ALA527, 

VAL523, LEU531, HIS90, YR355, 

ARG120, TRP387, GLY526 

ARG513, SER353, VAL116, 

LEU359, MET522, LEU384, 

TYR385, PHE518, TYR348 

 

 

 3D docking model;  (b) 2D docking model 

Figure 2. Сomplex of 11b with cyclooxygenase-2 (COX-2) 

Compound 12b has a binding affinity of –9.7 kcal/mol with cyclooxygenase-2 (COX-2) (PDB: 1CX2) 

due to the formation of six π-alkyl interactions of the oxazolopyridine and phenyl rings with the amino acids 

VAL349, LEU352, ALA527 and VAL523. Additionally, a carbon-hydrogen bond is formed between the 

amino acid residue SER 353 and the oxygen atom. Also, three hydrogen bonds are established between the 

nitrogen atom of the pyridine ring and the oxygen and hydrogen atoms of the carbonyl group with the amino 

acid residues GLN192, TYR355, HIS90, respectively. Compound 12b forms van der Waals interactions with 

the residual amino acids LEU359, SER 530, TRP387, TYR348, ARG513, PHE518, ALA516, ILE517, 

ARG120 (Fig. 3). 
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 (a) 3D docking model;  (b) 2D docking model 

Figure 3. Сomplex of 12b with cyclooxygenase-2 (COX-2) 

It was found that compound 13b has a docking score of –9.6 kcal/mol with cyclooxygenase-2 (COX-2) 

(PDB: 1CX2) due to the formation four π-Alkyl interactions observed between the phenyl and 

oxozolopyridine rings with amino acid residues LEU352, VAL349, ALA527, and VAL523, respectively. 

Additionally, there is one carbon-hydrogen bond interaction between the oxygen of the oxazole ring and the 

amino acid residue SER353. There are also two hydrogen bonds between the nitrogen atom of the pyridine 

ring and the amino acid TYR355, as well as between the oxygen atom of the carbonyl group and the amino 

acid residue HIS90. Compound 13b also forms van der Waals interactions with residual amino acids 

LEU359, SER530, TRP387, TYR348, ARG513, PHE518, ALA516, ARG120 (Fig. 4). 

 

 

 (a) 3D docking model;  (b) 2D docking model 

Figure 4. Сomplex of 13b with cyclooxygenase-2 (COX-2) 

In conclusion, compound 14b has a binding affinity of -9.8 kcal/mol with cyclooxygenase-2 (COX-2) 

(PDB: 1CX2) due to the formation of a single carbon-hydrogen bond between the oxygen atom of the car-

bonyl group and the amino acid residue SER530. There are also eight π-alkyl interactions observed between 

the phenyl and oxozolopyridine rings with amino acid residues LEU351, VAL349, ALA527, LEU352, 

HIS90 and TYR355, respectively. Moreover, the benzoyl ring forms one π-π T-shaped and one amide-π 

stacked interaction with the amino acid residues TRP387 and GLY526, respectively. Compound 14b also 
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forms van der Waals interactions with the residual amino acids ARG513, SER 53, VOL 116, LEU359, 

MET522, LEU384, TYR385, PHE518, TYR348. 

 

 

 (a) 3D docking model; (b) 2D docking model 

Figure 5. Сomplex of 14b with cyclooxygenase-2 (COX-2) 

It was found that the presence of a phenyl substituent at the 4th pyridone position in compounds 11‒14b 

increases their affinity to the selected receptors compared to other derivatives. 

Thus, taking into account computer modeling, the newly synthesized oxazolo[5,4-b]pyridine derivatives 

based on 3-aminopyridin-2(1H)-ones are very promising for further study of their potential anti-

inflammatory activity. 

Conclusions 

Consequently, our acylation reaction of 3-aminopyridones with dicarboxylic acid anhydrides showed 

that the monoamides formed at the first stage of the reaction undergo intramolecular cyclization to form oxa-

zolo[5,4-b]pyridines 11‒14a-c. The presence of carboxylic acid linkers in structures 11‒14a-c not only in-

creases water solubility of the compounds for further bioassays, but will also allow various modifications of 

the structure. In addition, the potential fluorescence of the condensed oxazolo[5,4-b]pyridine fragment [43] 

combined with the carboxylic acid linker will allow these derivatives to be used as possible biomarkers. The 

possible anti-inflammatory activity of the 12 newly obtained oxazolo[5,4-b]pyridine derivatives was evaluat-

ed using molecular docking with the AutoDock Vina program. Some compounds (11‒14b) showed higher 

binding affinity to the target protein (1CX2) compared to well-known anti-inflammatory drug diclofenac. 

Molecular studies have revealed that the presence of a phenyl substituent at the 4th position of oxazolo[5,4-

b]pyridine promotes a stronger interaction of compounds 11‒14b with the target protein. Therefore, the syn-

thesized oxazolo[5,4-b]pyridines have high potential and prospects for further investigation their anti-

inflammatory activity in vivo. 
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Synthesis, Characterization and Application  

of New Polymers Imprinted with Zinc (II) Ions 

In this work, molecularly imprinted polymers with zinc imprints and their comparison polymers without im-

prints were synthesized. A comparative characterization of the physical parameters of the synthesized zinc-

imprinted (ZnIP) and non-imprinted (NIP) polymers was carried out using the methods of elemental analysis, 

conductometry, scanning electron microscopy, and IR-Fourier spectroscopy. The ability of the resulting pol-

ymers to molecularly recognize zinc was evaluated. Based on experimental data on static adsorption, the ad-

sorption capacity of ZnIP and NIP was determined using an atomic emission spectrometer. It was found that 

ZnIP is characterized by better physical parameters and a higher ability for molecular recognition of zinc 

compared to NIP. ZnIP with zinc imprints were found to have better sorption capacity for zinc than their ref-

erence polymers. The sorption of zinc by molecular imprinted ZnIP is mainly due to the complex formation 

and pores of the initial carbon product. The synthesized ZnIP have increased porosity. The presence of pores 

with a diameter <50 nm in ZnIP is associated with voids formed after acid hydrolysis, which is clearly visible 

in images recorded by scanning electron microscopy. Thus, the possibility of using ZnIP as a selective 

sorbent has been established. 

Keywords: molecularly imprinted polymers, comparison polymer, sodium humate, polyvinyl alcohol, tem-

plate, zinc, sorption, adsorbent. 

 

Introduction 

Currently, water pollution with heavy metals is constantly increasing and poses a great threat to the en-

vironment. Therefore, the analysis of environmental objects for the content of heavy metals and the devel-

opment of appropriate detoxifiers are of great importance. 

With the development of modern technologies, the interest of researchers in the problems of synthesis 

of molecularly imprinted polymers (MIP) in the field of molecular recognition is steadily growing. Due to 

the unique properties and the ability of MIP to molecular recognition, these polymers are finding new appli-

cations. To create new polymer materials with improved performance characteristics, it is possible to control 

the process of template formation during the formation of MIP and after its removal from the polymer ma-

trix, the formation of a selective recognition cavity for the template of the molecule. Such polymers, which 

recognize target molecules with high selectivity, are relevant and are attracting increasing attention [1–10]. 

The use of molecularly imprinted polymers in the development of sorption materials is based on their 

ability to remove contaminants, including trace levels, in a highly selective manner, and the exceptional sta-

bility of polymer materials under harsh conditions makes it possible to simplify the process of water purifica-

tion in general. 

In recent years, researchers have made extensive use of the rapidly developing molecular imprinting 

technology to create new polymeric sorption materials [16–25]. The polymeric materials produced by mo-

lecular imprinting are widely and successfully used in industries such as chemical, pharmaceutical, biotech-

nological, and especially at the stages of purification of the final product [26–30]. 

As you know, zinc (Zn) is one of the most common heavy metals that is most often found in 

wastewater. Zinc compounds penetrate into natural water treatment from industrial wastewater. Dangerous 

forms of zinc in water are sulfates and chlorides, which belong to heavy metal salts. Both their excess and 

deficiency can cause damage to the systems of all living organisms [11–15]. Therefore, water purification 

from such a heavy metal as zinc is an important component of the water treatment system in production and 

industry. 
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Previously, molecular imprinted polymers have been synthesized and used for water purification from 

heavy metals [16, 20, 31, 32]. Continuing the research on the development of MIP, in this work zinc-

imprinted polymers (ZnIP) and non-imprinted polymers (NIP) were synthesized based on the product of pro-

cessing oxidized coal mining waste — humic acids (HA) and a functional monomer. 

Humic acids are known to be a complex mixture of high-molecular and multifunctional compounds of 

aromatic, heterocyclic and alicyclic nature, replaced by alkyl chains of different lengths with limiting and 

unsaturated bonds. Humic acids are natural detoxifiers. The aromatic nuclei of humic acids contain a large 

number of carboxyl, hydroxyl, and quinoid groups, which allow them to participate in a variety of redox re-

actions. In this regard, it is of interest to create a MIP based on functionalized humic acids with zinc imprints 

using the molecular imprinting method for the selective isolation of zinc ions from an aqueous medium. 

As an analogue of the structural fragments of sodium humate (HNa), we considered a functional mon-

omer — polyvinyl alcohol (PVA), copolymerization with which should lead to enrichment of the imprinted 

polymer product with sites designed for molecular recognition of target zinc molecules. 

The purpose of the study. On the basis of sodium humate, polyvinyl alcohol, to synthesize molecular 

imprinted polymers capable of molecular recognition of zinc and to conduct a comparative analysis of the 

textural properties of synthesized polymers. 

Experimental 

Materials 

In this study the following materials were used: sodium humate (HNa), isolated from oxidized coal 

from the Shubarkol deposit (Karaganda, Kazakhstan); polyvinyl alcohol ((C2H4O)x, M = 1–15·104, produced 

by Sigma-Aldrich); template — zinc acetate ((Zn(CH3CO2)2·2H2O, M=219.50 g/mol, produced by Sigma-

Aldrich)); crosslinking monomer — formaldehyde (CH2O, 37 % aqueous solution, produced by Sigma-

Aldrich); initiator of free radical polymerization — benzoyl peroxide (BPO) (C14H10O4, M=242.23 g/mol, 

produced by Sigma-Aldrich); solvent — distilled water. 

Synthesis of Sodium humate (HNa) 

Sodium humate was isolated from samples of oxidized coal from the Shubarkol deposit during alkaline 

impregnation caused by intercalation of sodium hydroxide into it. The alkaline impregnation method includ-

ed the following stages: mixing dried coal with an aqueous alkali solution with a concentration providing a 

given NaOH/substrate mass ratio (1:10); heating (100 °C, 2 hours) with stirring and holding at room temper-

ature; separation of the liquid phase from the residual coal. The residual coal was further treated with water, 

and the mixture was heated with stirring and the boiling point of a water bath for further 30 minutes. The 

first and second filtrates of sodium humate solutions were combined, poured into a crystallizer and dried at 

room temperature to a dry state. Dry sodium humate was weighed and the yield was determined. The yield of 

sodium humate is 76.00–82.00 % by weight of dry coal. 

Synthesis of molecular imprinted polymers with Zn2+ 

The synthesis of a molecular imprinted polymer with zinc was carried out according to a previously de-

veloped and modified method [20] as follows: a solution of Zn(CH3COO)2 was prepared, where the content 

of zinc ions introduced during tuning was 4.50 mg-eq. Then this solution was introduced into a solution of 

sodium humate. The mixture was kept for 3 hours with stirring until a stable prepolymerization complex was 

formed between the polymer molecules and the template. Next, a functional monomer (polyvinyl alcohol), a 

crosslinking agent (formaldehyde) and an initiator (benzoyl peroxide) were added to the prepolymerization 

complex. Benzoyl peroxide is an initiator of the oxidative process, which allows for the oxidative destruction 

of polyvinyl alcohol macromolecules with the formation of oligomers with an additional number of ketone, 

aldehyde and carboxyl groups. The oxidation process proceeds by a radical mechanism. Metals with variable 

valence contained in the mineral part of HNa act as catalysts for this process [33]. Next, the mixture was sub-

jected to heat treatment at 70 °C for 180 minutes. At the end of the copolymerization process, the resulting 

product was centrifuged (Hermle Labortechnik GmbH, Wehingen, Germany) at a speed of 4000 rpm, 

washed with water to a neutral medium, dried, crushed and sieved. The template was removed from the pol-

ymer mesh by acid hydrolysis with 0.1 N HCl solution, heated to 50–60 °C and kept for 30 minutes. The re-

sulting product was filtered and the precipitate was washed with water until the Cl– ions disappeared. The 

comparison polymers (non-printed polymers) were synthesized using a similar technique without the partici-

pation of a template, all other participants in the polymerization reaction remained the same. 
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Investigation of the obtained results of zinc-imprinted and non-imprinted polymers 

A complexometric analysis based on the titration of zinc ions with a solution of Trilon B in an acetate 

buffer with xylene orange as indicator, after binding of interfering elements with complexing agents, was 

used to determine the content of zinc ions in zinc-imprinted polymers (ZnIP). The content of zinc ions intro-

duced during tuning was 4.50 mg-eq per gram of imprinted polymer. 

The reaction in zinc-impregnated and non-imprinted (NIP) polymers was monitored by reverse titration, 

according to the content of oxygen-containing groups using the laboratory conductometer Anion-4100 (In-

fraspak-Analyte, Novosibirsk, Russia). 

The number of carboxyl groups was determined by the acetate method. The measurements were carried 

out sequentially on three hitches, and the average value of the three experiments was taken as the final value. 

The elemental analysis of ZnIP and NIP for the content of carbon, hydrogen, nitrogen and oxygen was 

carried out on an elemental analyzer (Elementar Unicube, Langenselbold, Germany). 

The composition of the zinc-imprinted and non-imprinted polymers obtained was confirmed by IR 

spectroscopy data performed on the FSM-1201 IR Fourier spectrometer (Infraspec Company, St. Petersburg, 

Russia). The range of wave numbers was 4000-400 cm-1, the error in the determination of the wave numbers 

did not exceed 2 cm-1. 

A MIRA 3 scanning electron microscope (Tescan Orsay Holding, Brno-Kohoutovice, Czech Republic) 

equipped with a system of detectors registering different signals was used to estimate the particle size and 

surface morphology of the obtained ZnIP and NIP. Images with topographic contrast were obtained using 

secondary electron detectors. The elemental composition on the ZnIP and NIP surfaces was determined by 

X-ray energy dispersive microanalysis. 

The sorption properties of synthesized zinc-imprinted ZnIP and non-imprinted polymers (NIP) were 

studied using the method described in [16]. To do this, 1 g of composite samples were mixed with a solution 

of zinc salt. The mixture was stirred at 120 rpm in a thermostatically controlled rocking chair at 25 °C for 

24 hours. The solutions were then centrifuged and filtered to determine the concentration of free zinc in them 

using an inductively coupled plasma atomic emission spectrometer ICAR6500 DUOLA (SPECTRO ARCOS 

EOP SPECTRO Analytical instruments GmbH, Germany). 

Results and Discussion 

Zinc-imprinted polymers (ZnIP) based on functionalized sodium humate capable of recognizing tem-

plate molecules were obtained using the molecular imprinting method. Their composition and physico-

chemical properties have been studied. The scheme for the preparation of ZnIP is shown in Figure 1. 

 

 

Figure 1. The scheme of obtaining a zinc-imprinted polymer 

The results of the chemical studies of synthesized zinc-imprinted polymers are confirmed by data from 

elemental analysis, IR spectroscopy, complexometry, conductometry and electron microscope. The physico-

chemical characteristics of zinc-imprinted polymers (ZnIP) in comparison with non-imprinted polymers 

(NIP) are shown in Table. 

As can be seen in Table, the oxygen content decreases by 4.54‒6.41 % with the introduction of imprint-

ed zinc polymers. This indicates the possibility of binding zinc ions by carboxyl and hydroxyl groups. A de-

crease in the content of oxygen-containing groups in zinc-imprinted polymers also makes it possible to as-

sume their binding to zinc ions by the mechanism of complexation. Thus, in zinc-imprinted polymers, their 

content is 4.21‒4.98 mg-eq/g, and in non-imprinted polymers — 4.82‒5.75 mg-eq/g. The ZnIP yield is 

78.42‒80.69 %, and NIP yield is 77.26‒79.84 %. 



Zhakina, A.Kh., Arnt, O.V. et al. 

48 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 2(114) 

T a b l e  

Characteristics of imprinted polymers 

№ Sample 
Component Ratio 

(HNa:PVA) 
Cg, % Hg, % Og, % 

Σ(COOH+OH) 

mg-eq/g 
Yield, % 

1 NIP1 
1:1 

56.30±0.2 3.83±0.1 39.22±0.4 4.82±0.2 77.26 

2 ZnIP1 60.74±0.2 3.95±0.1 34.68±0.4 4.21±0.2 78.42 

3 NIP2 
5:1 

57.20±0.2 3.86±0.1 38.29±0.4 5.75±0.2 79.84 

4 ZnIP2 63.52±0.2 3.97±0.1 31.88±0.2 4.98±0.2 80.69 

 

The IR spectra of non-imprinted and zinc-imprinted polymers are shown in Figure 2. 

 

 

Figure 2. IR spectra: 1 –ZnIP1, 2 — NIP1 

Analysis of the IR spectra of the zinc-imprinted polymers shows that the stretching peak characteristic 

of both the carboxylic groups at 1713 cm-1 and the hydroxyl groups at 3443 cm-1 suggest the possibility of 

zinc ions binding by the ion exchange and complexation mechanisms. There is a significant increase in ab-

sorption in the region of valence vibrations of methylene and methyl C–H at 2923 and 2857 cm-1, as well as 

deformation of C–CH3 groups at 1385 cm-1. The observed facts can be explained by destructive processes 

leading to a reduction in the length of the aliphatic chain and an increase in the number of ring –CH3 groups. 

The stretching peaks in the region of 1695‒1713 cm-1 are attributed to the carboxyl and ketocarbonyl (C=O) 

groups, whereas peaks 1130‒1190 cm-1 and 1150 cm-1 are associated with the stretching of C–O molecules 

of carbohydrates, alcohol and ether groups, respectively. An increase in the intensity of the band with a max-

imum at 915‒933 cm-1 is associated with an increase in the content of substituted aromatic structures. The 

absence of absorption of the characteristic band of the COOH-group 1713 cm-1 and the appearance of new 

bands characteristic of the carboxylate grouping 1585 and 1385 cm-1 in zinc-imprinted polymers suggests 

that part of the zinc ions is bound by the carboxyl group to the chelate complex. The bond between Zn–O is 

in the range from 400 to 600 cm-1. This means that peaks 467 and 485 cm-1 clearly represent Zn–O bonds. 

The evidence of the presence of coordination nodes with the participation of C–O on the surface and in the 

volume of composites is the absorption in the region of 600‒800 cm-1, which relate to the valence vibrations 

of carboxyls. The absence of absorption bands characterizing the valence oscillations of the Zn–O bond in 

the spectra of non-imprinted polymers indicates the decay of these bonds. 
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The textural characteristics of ZnIP and NIP with topographic contrast were obtained using a TESCAN 

MIRA 3 scanning electron microscope (Fig. 3-4). The elemental composition of the samples was determined 

by quartering in different areas of the sample surface using X-ray energy dispersive microanalysis X-Act 

(Oxford Instruments). 

 

  

 
 

Figure 3. ZnIP1 microstructure with elemental analysis 

  

  

Figure 4. NIP1 microstructure with elemental analysis 

A comparative analysis of micrographs obtained of zinc-imprinted and non-imprinted polymers indi-

cates a difference in their surface morphology and particle size. The ZnIP1 electron micrographs (Fig. 3) 

show spherical and cubic formations and are characterized by increased porosity compared to NIP1. It should 

be noted that removing the template from the polymer mesh uncorks additional pores, which is clearly visi-

ble in the images recorded by scanning electron microscopy (Fig. 3). The elemental composition and multi-

layer EDS-map confirm the composition of the products obtained, and the distribution of chemical elements 
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on the microstructure confirms the presence of elements that make up both zinc-imprinted and non-imprinted 

polymers. 

To study the binding capacity of the zinc-imprinted and non-imprinted obtained, experiments on static 

adsorption of zinc were carried out (Fig. 5). 

 

 

Figure 5. Results of sorption properties of synthesized polymers: 1 — NIP2; 2 — ZnIP2, 3 — NIP1; 4 — ZnIP1 

A study of the adsorption properties of imprinted polymers pre-tuned to zinc ions showed a sharp in-

crease in sorption capacity compared to non-imprinted polymers. The effect of improving sorption properties 

for Zn2+ is 78.90 % and 85.07 % for ZnIP2 and ZnIP1 samples, respectively. This confirms the assumption 

that there are pores in the system that corresponding to the ionic radius of the hydrolyzed metal and the ef-

fectiveness of the polymer selectively tuned to the sorbed ion. 

Conclusions 

Thus, two types of polymer sorbents were synthesized: zinc-imprinted polymers (ZnIP) and non-

imprinted polymers (NIP). Synthesized zinc-imprinted and non-imprinted polymers were obtained with dif-

ferent ratios of sodium humate and polyvinyl alcohol. It was found that increasing the content of the func-

tional polymer did not affect the yield of zinc-imprinted polymers. The decrease in oxygen-containing 

groups in the composition of the zinc-imprinted polymers indicates the possible binding of the template via 

the complexation mechanism. In this case, the sequential cross-linking of the prepolymerization complex 

with the functional monomer creates an imprinted sorption layer. An analysis of zinc-imprinted and non-

imprinted polymers was carried out using modern physicochemical methods. The results of the evaluation 

the sorption properties of zinc-imprinted polymers and comparison polymers showed that imprinted poly-

mers synthesized on the basis of sodium humate and polyvinyl alcohol at a ratio of 1:1 have the highest af-

finity for zinc. The obtained zinc-imprinted polymers using molecular imprinting technology can be recom-

mended as sorption materials, the operating principle of which is based on the effect of molecular recogni-

tion and selective extraction. 
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Detecting Shape of Hybrid Polymer/Surfactant Micelles:  

Cryo-Transmission Electron Microscopy, Small-Angle Neutron Scattering  

and Dynamic Light Scattering Study 

In-depth study of shape of hybrid micelles in the micellar solutions of anionic surfactant potassium oleate, 

containing hydrophobic polymer poly(4-vinylpyridine) (P4VP) was conducted via cryo-transmission electron 

microscopy (cryo-TEM), small-angle neutron scattering (SANS) and dynamic-light scattering of visible light 

(DLS). Direct visualization of the solutions with cryo-TEM evidenced the coexistence of polymer-free spher-

ical micelles and branched rodlike hybrid micelles with mean length of 200 nm and radius of 2 nm, governed 

by contour length of solubilized P4VP and length of hydrophobic “tail” of potassium oleate, respectively. The 

formation of branches in the hybrid micelles was explained by attaching the thermodynamically unfavorable 

end-caps of micelles to their polymer-loaded cylindrical fragments. By SANS it was shown that the cylindri-

cal local shape and the radius of the micelles are independent of the concentration of embedded P4VP. Relax-

ation processes in the solutions were investigated with DLS. Three relaxation modes were observed for hy-

brid micelles, similar to polymer-free wormlike micelles. Fast and medium relaxation modes were attributed 

to diffusion of entangled micellar chains and their segments, respectively. The slow mode was related to elec-

trostatic repulsion between similarly charged hybrid micelles. 

Keywords: ionic surfactant, polymer-surfactant interactions, rodlike micelles, hybrid micelles, branching 

points, cryo-TEM, SANS, DLS. 

 

Introduction 

Self-organization of surfactants into the micelles of different shapes is of extensive attention of scien-

tists during the last three decades [1–4]. Hydrophobic attraction of “tails” and electrostatic repulsion of 

charged hydrophilic “heads” of ionic surfactants define the shape of the resulting aggregate [2, 5]. Wormlike 

micelles (WLMs) are aggregates of cylindric form that consist of two hemispheric end-caps and central cy-

lindrical part [3, 6–8]. Examples of practical applications of semi-dilute solutions of WLMs include their use 

as foaming agents [9], thickeners for fracturing fluids and cosmetic products [3, 7], drag-reducers [10–11] 

and drug delivery systems [12, 13]. 

Incorporation of a polymer into the WLMs of a surfactant results in the formation of hybrid 

micelles [14–20] that possess the unique properties of both components. For example, recently obtained hy-

brid micelles of anionic surfactant potassium oleate with embedded hydrophobic polymer poly(4-

vinylpyridine) (P4VP) demonstrated both high response to hydrocarbon inherent to surfactant-based fractur-

ing fluid and enhanced drag reducing efficiency inherent to polymer chains [21]. Thus, semi-dilute solution 
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of the hybrid micelles could potentially be used not only as a fracturing fluid in oil production, but also as a 

drag-reducer for oil transportation. 

In the previous papers [20–22], solutions of the hybrid micelles, saturated with P4VP, were investigat-

ed. Since the incorporated polymer influences the hydrophilic-hydrophobic balance of the micelles [20], the 

concentration of solubilized P4VP is the key parameter that governs their shape. The current paper is devoted 

to the detailed experimental study of the shape of the hybrid micelles, containing different amount of P4VP. 

Cryo-transmission electron microscopy (cryo-TEM) was used to directly image the micelles, while contrast 

matching technique in small-angle neutron scattering (SANS) was employed to investigate their local shape. 

Additionally, dynamic light scattering of visible light (DLS) provided information about relaxation processes 

in their aqueous solutions. 

Experimental 

Materials. Anionic surfactant potassium oleate (purity >98 %) from TCI Europe, inorganic salt KCl 

(purity > 99.5 %) from Fluka, ethanol (purity > 99 %) from Merck, KOH (purity > 99 %) from Acros Organ-

ics, and polymer P4VP (molar mass 60000 g/mol, contour length 140 nm) from Sigma-Aldrich were used as 

received. Water was purified using a Millipore Milli-Q system. For SANS experiments, mixture of water and 

deuterium oxide (purity 99.9 %, Sigma-Aldrich) was used as a solvent. 

Sample preparation. Stock solutions of polymer-free WLMs were obtained by mixing 47 mM potassi-

um oleate and 80 mM KCl with Milli-Q water and stirred with a magnetic stirrer for 24 hours. The pH of the 

solutions was kept at 11 with aqueous solution of 1 M KOH. Under these conditions the WLMs were formed 

in the samples [22]. 

Hybrid micelles were prepared by pouring the micellar stock solution on the thin polymer film. The 

film was prepared by full evaporation of ethanol from the drop of 5 wt.% P4VP solution in ethanol on the 

bottom of vial at room temperature. P4VP embedded into the micelles after stirring the stock solution of pol-

ymer-free micelles in the vial with polymer film using magnetic stirrer for 1 day. Content of P4VP in the 

final solutions was varied from 0.01 to 0.04 monomol/L (amount of monomer units per 1 L of solution). 

Cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM experiments were performed us-

ing a Titan Krios (Thermo Fisher Scientific, Hillsboro, OR, USA) at acceleration voltage of 300 kV in 

bright-field TEM in a low-dose imaging mode. The microscope was equipped with a Falcon 2 direct electron 

detector (Thermo Fisher Scientific, Hillsboro, OR, USA). To receive the clear images of the aggregates, the 

stock solution of 47 mM potassium oleate and 0.02 monomol/L P4VP was diluted 4 times with aqueous so-

lution containing 80 mM KCl. The samples were applied onto the Lacey carbon-coated side of the 300 mesh 

copper TEM grid with Vitrobot Mark 4 (Thermo Fisher Scientific, Hillsboro, OR, USA) [23]. After blotting 

the excess of the solution with filter paper the grid was plunged into liquid ethane. The images were pro-

cessed with EPU 3.6 software. 

Small-angle neutron scattering (SANS). SANS measurements were carried out using time-of-flight 

spectrometer YuMO of high-flux pulsed reactor IBR-2M (Joint Institute for Nuclear Research, Dubna, Rus-

sia). Details of the experiments and data treatment are described elsewhere [24]. The values of scattering 

length densities for potassium oleate, monomer unit of P4VP and deuterium oxide, calculated with SasView-

5.0 program (http://www.sasview.org/), equaled to ρOK = 0.15·10–6 Å-2, ρP4VP = 2.00·10–6 Å-2 and 

ρD2O = 6.38·10–6 Å-2, respectively. To obtain scattering from potassium oleate molecules in the hybrid mi-

celles, the contrast variation technique was applied. The mixture of deuterium oxide and water with volume 

ratio D2O/H2O=37/73 (v/v) was used as a solvent in the experiments to match the scattering from P4VP. The 

samples were put into the Hellma quartz cuvettes of 1 mm width. Temperature was kept at 20 °C. Data was 

obtained in the scattering vectors Q range from 6·10–3 to 6·10–1Å-1. 

Dynamic-light scattering of visible light (DLS). DLS data were collected with ALV/DLS/SLS-5022F 

(ALV GmbH, Langen, Germany). Scattering intensity was analyzed with ALV6010/EPP digital correlator. 

Variation of scattering angle was made by stepping-motor-driven goniometer system. Helium−neon laser 

(wavelength of 632.8 nm) was used as a light source. The temperature of the samples was kept at 20 °C by a 

thermostat Lauda Ecoline RE 306. The samples were filtered through 0.45 μm filter (Millipore Millex-FG) to 

prevent the intrusion of dust. Contin method was applied for data treatment [25]. 

Results and Discussion 

The solutions of potassium oleate with embedded P4VP macromolecules were visualized by cryo-

TEM (Fig. 1). In Figure 1 coexisting spherical and rodlike aggregates with mean length of 200 nm can be 
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observed. The mean radii of cross section spherical and rodlike aggregates are circa equal to 2 nm and coin-

cide with the length of the alkyl “tail” of potassium oleate [22]. Consequently, the observed spherical aggre-

gates are, probably, polymer-free micelles of potassium oleate. The estimated mean length of the rodlike mi-

celles (Fig. 1) is close to the contour length of P4VP. One can also easily detect many “Y-shaped” branching 

points in the rodlike micelles (Fig. 1). Note that zero-shear viscosity of the polymer-free micellar solution, 

containing similar amount of potassium oleate and KCl, as was demonstrated by steady shear rheological 

tests [22], was close to that of pure water. Consequently, spherical micelles or short rodlike micelles that do 

not contribute to the viscosity of the solution are present at these conditions. Detecting rather long rodlike 

micelles in the P4VP-containing solution is suggested to be the result of the solubilization of polymer chains 

by the micelles. Furthermore, branches in the micellar solutions at such low concentration of surfactant have 

never been observed before. As was shown by computer modelling, solubilization of P4VP induced the for-

mation of additional branching points in the hybrid micelles by attaching the energetically unfavorable end-

caps to the polymer-loaded cylindrical fragments [26, 27]. 

 

       
 

 

Figure 1. Spherical polymer-free micelles and prolate hybrid micelles in aqueous solution  

of 12.5 mM potassium oleate and 80 mM KCl, containing 2·10-3 monomol/L P4VP, as imaged with cryo-TEM.  

The arrows point out the branching points in the hybrid micelles 
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The shape of hybrid micelles with different amount of embedded P4VP was revealed by SANS using 

contrast variation technique. In Figure 2a the neutron scattering intensity in the range of the small values of 

scattering vector Q behaves as: I~Q-1. The scattering intensity I(Q) from the rodlike particles can be ex-

pressed as [28]:  

 
2 2

2 1

0( ) exp
2

R Q
I Q V Q−  

=  − 
 

, (1) 

where 
OK solvent =  −   is the scattering contrast, equal to the difference between the scattering density of 

potassium oleate and of the solvent, V0 and R are the volume and radius of the rods. Consequently, in the 

case of rodlike scatterers, ln(IQ) vs Q2 dependence should represent a straight line with the slope a = –0.5·R2. 

Therefore, Q-1-scaling in low-Q region of the scattering curves (Fig. 2a) indicates the local cylindric shape of 

the hybrid micelles at all studied concentrations of P4VP. The linear behavior of the corresponding ln(IQ) vs 

Q2 dependencies confirms this observation (Fig. 2b). Mean radius of the hybrid micelles, estimated from the 

slopes of the dependencies, circa equals to 2 nm for all studied solutions and corresponds to one, evaluated 

from cryo-TEM image (Fig. 1). 
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Figure 2. SANS curves in I(Q) (a) and ln(IQ) vs Q2 (b) representations for micellar solutions of 47 mM potassium ole-

ate with different concentrations of embedded P4VP: 0.01 monomol/L (squares); 0.02 monomol/L (stars);  

0.03 monomol/L (triangles). Matching the scattering from P4VP is used (solvent: 80 mM KCl  

in D2O/H2O=37/73 (v/v), pH=11). The data for solutions with 0.01 monomol/L P4VP are actual values,  

data for solutions containing 0.02 monomol/L and 0.03 monomol/L are shifted by a factor of 10 and 100 for clarity.  

The solid line shows the slope of the I ~ Q-1 dependence. The dashed lines are linear fits of the dependences 

The relaxation processes in aqueous solutions of hybrid micelles were studied by DLS. The autocorrela-

tion functions g(1)(q, t) of the scattered visible light by hybrid micelles with different amount of embedded 

P4VP decay multi-exponentially (Fig. 3a). Thus, in the corresponding decay time distributions A(t) three re-

laxation modes with relaxation rates Γ1, Γ2 and Γ3 can be observed (Fig. 3b). The obtained DLS data are very 

close to those of semi-dilute solutions of the entangled polymer chains and WLMs [29–31]. Therefore, in the 

case of hybrid WLMs the fast (I) and medium (II) relaxation modes (Fig. 2b), like in semi-dilute solutions of 

WLMs, could be attributed to translational diffusion of the chain segments and to the hindered motion of the 

entangled chains, respectively. Linear shape of the dependencies of the relaxation rates Γ1 and Γ2 on q2 for 

fast and medium processes (Fig. 4a and b, respectively) confirm that they represent diffusive motion. By 

contrast, a non-linear dependence for slow (III) relaxation mode (Fig. 4c) suggests that this mode is the non-

diffusive one. It is, probably, related to electrostatic repulsion of the similarly charged hybrid micelles of po-

tassium oleate. 

 



Kwiatkowski, A.L., Molchanov, V.S. et al. 

58 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 2(114) 

10
-2

10
-1

10
0

10
1

0.0

0.2

0.4

0.6

0.8

1.0

g
(1

) (q
,t
)

t (ms)

a)

     

10
-1

10
0

10
1

0.0

0.2

0.4

0.6

0.8

1.0

I

III

A
(t

)

t (ms)

b) II

 

Figure 3. Field autocorrelation functions g(1)(q, t) (a) and decay time distributions A(t) (b) at scattering angle θ=90◦  

for micellar solutions of 47 mM potassium oleate with different concentrations of embedded P4VP: 0.02 monomol/L 

(stars); 0.03 monomol/L (triangles) and 0.04 monomol/L (circles). Solvent: 80 mM KCl in water at pH=11 
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Figure 4. Г vs q2 dependences for first (a), second (b) and third (c) components of the field autocorrelation function 

g(1)(q, t) of the hybrid micelles in 47 mM solution of potassium oleate containing 0.02 monomol/L of P4VP.  

Solvent: 80 mM KCl in water at pH=11 

Conclusions 

Cryo-TEM, DLS and SANS were applied to shed light on the shape of hybrid micelles in the aqueous 

solutions of anionic surfactant potassium oleate with embedded hydrophobic polymer P4VP. Cryo-TEM evi-

denced the presence of branched rodlike micelles with mean length of 200 nm that is close to the averaged 

contour length of solubilized P4VP chains. Formation of branches in the hybrid micelles was caused by at-

taching of the thermodynamically unfavorable end-caps of micelles to the polymer-loaded central cylindrical 
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parts. The local cylindrical shape of hybrid micelles, as was shown by SANS, was independent of the con-

centration of solubilized P4VP. Values of radii of the micelles, estimated from cryo-TEM and SANS data 

were equal to the length of hydrophobic “tail” of potassium oleate. Relaxation processes in the hybrid mi-

celles were shown by DLS to be quite similar to those in polymer-free WLMs of surfactant: two relaxation 

modes were attributed to diffusion of the entangled micellar chains and their segments; the third mode was 

related to the electrostatic repulsion between similarly charged micelles. 
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Effect of Heat Treatment on the Supramolecular Structure of Copolymers  

Based on Poly(propylene glycol fumarate phthalate) with Acrylic Acid 

Previous studies investigating the thermal decomposition of p-PGFPh:AA copolymers in an inert atmosphere 

have provided only a general understanding of the changes that occur during thermolysis. Comprehensive 

studies are required to gain a better understanding of these processes [1]. The most comprehensive infor-

mation on the influence of various factors on both the kinetics and the supramolecular structure of the result-

ing products can be obtained by combining the method of thermal analysis with IR, mass spectrometry, and 

scanning electron microscopy. The compounds studied have two different compositions, namely 

p-PGFPh:AA 6.77:93.23 mol % and p-PGFPh:AA 86.67:13.33 mol %. These compounds were then subject-

ed to a thermolysis process, which resulted in the emission of gases and a decrease in sample weight. The 

degradation process can be divided into three stages: 1) Depolymerization of the main chain; 

2) Depolymerization of the side chain; 3) Final decomposition. These processes occur sequentially at differ-

ent temperature ranges. According to TG- and DTG studies, complete decomposition of p-PGFPh:AA copol-

ymers occurred at Tterm = 340–350 °C. In this temperature range, a slight loss of sample mass (less than 

10 wt %) was observed along with a slight gas evolution. The main gaseous products from the transformation 

of the studied samples were CO and CO2. This was supported by IR-CO (2000–2200 cm−1) and CO2 (2310–

2370 cm−1) as well as mass spectrometric observations. The final products resulting from the thermolysis of 

p-PGFPh:AA copolymers were examined under an electron microscope. The results showed a similar mor-

phological pattern of mesostructures with sizes ranging from 0.3–1.5 μm, which were observed depending on 

the porous structure of the initial polymer material. Based on the experimental data, it can be concluded that 

the p-PGFPh:AA copolymers (in proportions of 6.77:93.23 mol % and 86.67:13.33 mol %) have a relatively 

high degree of resistance to heating and do not undergo any changes in chemical composition, particle size 

and shape. In conclusion, the results clearly indicate that the selection of conditions for pyrolysis plays a cru-

cial role in increasing the thermal stability of polymeric materials. This method allows for purposeful changes 

in the structure and properties of polymers. 

Keywords: acrylic acid, poly(propylene glycol fumarate phthalate), polymer, micrographs, morphology, elec-

tron microscope, thermogravimetric analysis, supramolecular structure. 

 

Introduction 

In terms of production and consumption, the polymer materials industry has grown to enormous propor-

tions, where extending the lifespan of such materials is equivalent to increasing their production from an 

economic standpoint [2]. It should be noted that it is important to stabilize polymer materials as raw material 

resources are being depleted each year. Predicting the service life of polymers is a crucial aspect of stabiliza-

tion. Incorrect determination of the operating time of polymer materials can lead to unexpected premature 

failure of parts made of polymers and, as a consequence, to the failure of complex technical devices, which is 

unacceptable (technological factor). Reduced polymer service life leads to economic loss due to underutiliza-

tion [3–5]. 

One way to improve the fire resistance of polymers is to add fire retardants as appropriate additives to 

ensure a safe environment [6–8]. 

A key concern is the degradation and stabilization of polymers. This involves both ecological and envi-

ronmental protection issues. From an environmental point of view, it is becoming relevant to address prob-

lems related to recycling waste polymers and minimizing the amount of incinerated polymer waste [9–13]. 
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A promising approach is to create polymers with a precisely defined lifespan. These polymers should be 

utilized while needed and decompose once they are no longer required. 

The problem of stabilizing the properties of polymer products is diverse due to the variety of tasks in-

volved. Solving this problem requires a good understanding of the scientific principles of stabilization, as 

well as knowledge of the mechanisms of polymer degradation and kinetic patterns [10–16]. 

A significant amount of research is currently being conducted into the ageing process of polymers, re-

sulting in the development of effective measures for comprehensive protection against all types of degrada-

tion. The ageing of polymers is characterized by irreversible changes in the polymer chain, which ultimately 

lead to a loss of the performance characteristics of the polymer product. The aging of polymers is mainly 

determined by their structure, the stability of their bonds, and the type of side groups. At most, the macromo-

lecular chains in our body tend to break down, resulting in the formation of many low molecular weight frac-

tions. This process leads to a decrease in the average molecular weight and an expansion of molecular weight 

distribution [16-17]. 

The reactivity of the molecular chain causes polymer aging. The rate and direction of aging depend on 

the molecular and supramolecular structure. The supramolecular structure (morphology) is determined by the 

way the chains are arranged (packing) into spatially distinct elements in a solid (block) polymer, as well as 

the size, shape and relative arrangement of these elements. Indeed, the chemical properties of polymers are 

influenced by various factors such as the length and stereoisomerism of the chains, the way in which the 

macromolecules are stacked, and their crystallization [18‒21]. 

The supramolecular structure of the polymer is not perfect. It contains correctly packed macromolecules 

in both crystalline and amorphous regions, but there are also many defects and disturbances of order. These 

features have significant consequences for the aging of solid polymers [22-23]. 

Firstly, structural and physical heterogeneity results in the non-uniform distribution of reagents and ad-

ditives within the polymer system. Secondly, structural microheterogeneity leads to a broad distribution of 

regions exhibiting disparate frequencies of molecular motion within the polymer. This results in a wide range 

of kinetic constants and activation energies for elementary reactions. All this makes polymers more suscepti-

ble to aging [24–26]. 

Polymeric materials based on unsaturated polyester resins are widely used in various industries and in 

our daily lives due to their good mechanical properties, strength, biocompatibility, viscoelastic nature, and 

the ability to take any shape during processing. Extensive research has been carried out to develop methods 

for producing unsaturated polyester resins [27-28], including one of the main sources of raw materials — 

poly(propylene glycol fumarate phthalate), which is used to produce the proposed copolymer (which can be 

used as hydrogels in the processing of vegetable crops). It is worth noting that the production technology for 

this raw material has been fully developed [28-29]. 

The use of moisture sorbents in agriculture for growing crops has led to an increase in the use of hydro-

gels. However, the long-term use of artificial soil made from hydrogels can lead to their aging and degrada-

tion, which can result in reduced crop yields. At present, we do not fully understand the substances that cause 

the polymer gels added to natural soils and the structures that form the basis of artificial soils to degrade un-

der the influence of various environmental factors. It is vital to identify these factors, including seasonal and 

daily fluctuations in temperature, in order to prevent the degradation process and maintain high crop yields. 

We are among the first in the world to emphasize the need to address these issues. 

Solving these problems is impossible without studying the supramolecular structure (morphology) of 

polymer materials using electron microscopy as a function of annealing temperature (it is also important to 

note that heat treatment affects the morphology of the polymer!). The results obtained make it possible to 

reveal the mechanism of destruction of a real polymer and try to control it in the desired direction. 

The objective of the research is to investigate the supramolecular structure formation mechanisms of 

copolymers of poly(propylene glycol fumarate phthalate) and acrylic acid, before and after being subjected 

to heat treatment. 

Experimental 

Copolymers based on poly(propylene glycol fumarate phthalate) [29] with acrylic acid (Sigma-Aldrich, 

Germany) at different initial ratios of 6.77:93.23 mol % and 86.67:13.33 mol % were selected as objects of 

study [27, 30]. 

Poly(propylene glycol fumarate phthalate) is a chemical compound produced by a polycondensation re-

action of propylene glycol, phthalic anhydride, and fumaric acid. The reaction takes place at a temperature of 
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180 °C and is carried out using a standard procedure [30]. An aluminum chloride catalyst is used in a nitro-

gen stream to prevent unwanted gelatinization processes. The reaction time is 16 hours. 

Copolymers were produced by mixing comonomers in dioxane at 60 °C in glass ampoules. The combi-

nation of comonomers ranged from 0.02–0.8 mol fractions with a total monomer concentration of 1 mol/l 

and [PB] = 1.0·10–2 mol/l. The copolymers were extracted from the solution by precipitation with hexane 

followed by re-precipitation with a toluene solution. The samples were then dried under vacuum at 40–

45 °C. The PB initiator was recrystallized from benzene several times and stored at –10 °C. The solvents, 

namely dioxane and ethanol were dried and purified according to known methods. 

The study of the microstructure and quantitative analysis of the elemental composition of the surface 

layer of copolymers were carried out using a JEOL JSM-5910 electron microscope (Jeol Company, Japan). 

The samples were scanned at varying magnifications (×500, ×1500, ×3000, ×10000). 

The copolymer’s surface morphology was studied with the help of an NT-206 atomic force microscope 

(AFM) (manufactured by MTM in Minsk, Republic of Belarus) in a static scanning mode. A CSC 12/15 sili-

con cantilever was used for the same. The experimental data were analyzed and visualized using the Sur-

faceXplorer software (developed by Microtestmachines, an additional liability company) and nanoImages 

(Scientific Research Center for Preservation of the National Academy of Sciences of Belarus SSI). 

The kinetics of the thermal destruction process was studied by thermal analysis with the registration of 

TGA-DSC-IR curves on a Netzsch Jupiter STA 449 F3 (Germany) combined with a QMS 403 Aeolos Quad-

ro mass spectrometer (NETZSCH-Gerätebau GmbH, Germany) for better accuracy. The sample weighed 

30 mg in the form of ground powder. TG curves of the samples were recorded in the range from 50 to 800 °C 

with heating rates of 5, 7.5, 10.0, 12.5 °C/min in a nitrogen atmosphere. 

The experimental data obtained were processed using the licensed software “Origin Pro 8.1”. 

Results and Discussion 

It is known that network polymers, i.e. PGFPh:AA copolymers, are particles with uncontrolled parame-

ters of molecular weight and morphology [31]. In this work, the dimensional characteristics of the 

p-PGFPh:AA copolymer were assessed by electron microscopy and the morphological characteristics of 

p-PGFPh:AA polymer particles were studied. 

Many polymeric materials have relatively high thermal stability; they decompose under the influence of 

high temperatures in a nitrogen atmosphere [32]. Thermal analysis was conducted on the p-PGFPh:AA 

copolymer (6.77:93.23 mol %) using thermal analysis to record TGA-DSC-IR curves on a Netzsch Jupiter 

STA 449 F3 instrument combined with a QMS 403 Aeolos Quadro mass spectrometer (Fig. 1). A detailed 

description of the degradation mechanism of p-PGFPh:AA copolymers of different initial ratios has been 

given in the referenced work [32]. 

 

  

Figure 1. Thermograms of p-PGFPh:AA copolymers at the initial ratios M1:M2, mol %:  

(a) — 6.77:93.23 mol %; (b) — 86.67:13.33 mol % in a nitrogen atmosphere 

During the annealing process of p-PGFPh:AA copolymers, morphological changes occur along with 

changes in its chemical composition. The copolymer is a polymer chain of unsaturated polyester resin, which 

undergoes thermal decomposition in the absence of oxygen. This process can result in the destruction of the 

copolymer at the ester bond, and the release of carbon dioxide during thermal destruction. Analysis of gase-

ous products resulting from the thermal decomposition of p-PGFPh:AA copolymers (Tmax = 340–350 °C) 
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indicates the formation of toxic gases, including carbon monoxide (CO) and carbon dioxide (CO2). Based on 

TG/DSC-MS analysis, it was found that increasing the proportion of acrylate units in the p-PGFPh:AA co-

polymer (6.77:93.23 mol %) resulted in a 50 % reduction in the formation of toxic gaseous products such as 

carbon monoxide (CO) and carbon dioxide (CO2) (Fig. 2). 

 

 

Figure 2. Chromatogram of the pyrolysis products of p-PGFPh:AA copolymers at the initial ratios M1:M2, mol %:  

(a) — 6.77:93.23 mol % and (b) — 86.67:13.33 mol % 

In these mass spectra in Figure 2, the most intense peaks correspond to a molecular ion with a mass of 

44 amu. The results of a search against the NIST mass spectrum database indicate that this peak corresponds 

to carbon dioxide (CO2). The release of a small amount of CO2 also occurs at ~538 °C for p-PGFPh:AA co-

polymers (6.77:93.23 mol %) and ~550 °C for p-PGFPh:AA copolymers (86.67:13.33). When comparing the 

thermograms of the samples, it can be concluded that p-PGFPh:AA copolymers are thermally stable [1]. 

During annealing, p-PGFPh:AA copolymers become black in color which can be attributed to the formation 

of carbon. 

The reaction mechanism of the thermal degradation of the copolymer of poly(propylene glycol fumarate 

phthalate) with acrylic acid can be presented as follows [1]: 

1. Initiation: 

Decomposition of p-PGFPh under the influence of high temperatures and the formation of active radi-

cals: 

 p-PGFPh → p-PG• + •FPh 

2. Reaction of p-PGFPh radicals with acrylic acid: 

p-PG•/•FPh radicals can react with acrylic acid (AA) via an addition reaction to form an adduct: 

 p-PG• + AA → p-PG-AA• 

3. Continued breaking of chemical bonds: 

The p-PG-AA• adduct can react further with other radicals or p-PGFPh molecules, breaking bonds and 

forming new radicals: 

 p-PG-AA• + p-PGFPh → p-PG• + p-PGFPh-AA• 

4. Formation of destruction products: 

The process of breaking down a p-PGFPh:AA copolymer can result in the formation of degradation 

products such as acrylic acid (AA) monomers, p-PGFPh monomers, and other fragmented compounds. 

These fragments can further degrade to smaller organic compounds such as acids, aldehydes, CO, CO2, and 

other products. The thermal degradation of the copolymer leads to the cleavage of bonds within the macro-

molecule, resulting in the formation of reaction fragments and degradation products. 

In some cases, certain volatile polymer products can be identified by a strong infrared absorption peak. 

This peak is usually associated with gas phase components of the pyrolysis products, which are mainly CO2 

(2310 cm−1) and CO (2000 cm−1). The results of IR spectrometric analysis confirm this conclusion (Fig. 3). 
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Figure 3. IR spectra of p-PGFPh:АА decomposition products at ratios М1:М2, mol %:  

(a) — 6.77:93.23 and (b) — 86.67:13.33 recorded at temperatures between 200 and 500 °С 

In order to determine the potential of p-PGFPh:AA copolymers as binder substances, it is important to 

understand how they change under high temperatures at different ratios (6.77:93.23 mol % and 

86.67:13.33 mol %). To achieve this, it is necessary to study the evolution of the polymer morphology during 

heat treatment in a nitrogen atmosphere. Annealing can cause phase transformations, recrystallization, and 

changes in the morphology and characteristics of polymers. It is known that the mobility of polymer molecu-
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lar chains increases with temperature. The morphology of polymers is influenced by chain mobility and re-

crystallization. 

After being exposed to a temperature of 150 °C, the surface of p-PGFPh:AA copolymers (initially 

mixed in the ratio of 6.77:93.23 mol %) showed slight deformation with darkening as shown in Figure 4, a. 

When annealed at 200 °C, the surface appeared wavy with local formation of bumps and grooves. Charring 

of the material caused a significant darkening and turned it to a brown color as shown in Figure 4, b. The 

change in the surface topography of the copolymers becomes more pronounced as the temperature is in-

creased to 350 °C: local formations appear in the form of mounds and pits, i.e. the surface becomes rough 

(Fig. 4, c). Annealing at 400 °C does not lead to any significant change in the morphology of the copolymer 

surface; it is only characterized by a greater darkening of the p-PGFPh:AA copolymer (Fig. 4, d). The copol-

ymer annealed at 450 °C is characterized by a certain smoothing of the surface relief of the copolymers, but 

with an obvious blackening and a metallic sheen (Fig. 4, f). Membrane samples become hard and brittle. Af-

ter annealing at 500 °C, the brittle copolymer begins to deteriorate and crumble, which indicates almost 

complete decomposition of the polymer (Fig. 4, f). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

a — 150 °C; b — 200 °C; c — 350 °C; d — 400 °C; e — 450 °C; f — 500 °C 

Figure 4. Annealed copolymers p-PGFPh:AA at the initial ratios of 6.77:93.23 mol % 
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The change in film morphology was analyzed by scanning electron microscopy (Fig. 5). Micrographs of 

the synthesized poly(propylene glycol fumarate phthalate) with acrylic acid are shown in Figure 5 a, b. 

A study of the surface morphology of the resulting p-р-PGFPh:AA copolymer (at the initial ratio of 

6.77:93.23 mol %) showed that the latter is a rather complex structural and morphological organization. 

Photographs of the sample show a characteristic openwork structure with a high proportion of smaller pores 

(Fig. 5, a and b). 

 

  

Figure 5. Scanned electron micrographs of the p-PGFPh:AA copolymer  

at the initial ratios of 6.77:93.23 mol % at magnification: ×3000 

This is also evidenced by the data on the state of the surface prior to temperature modification obtained 

using an atomic force microscope (Fig. 6). 

 

 

Figure 6. 3D visualization of the surface relief of the p-PGFPh:AA copolymer  

at the initial ratio of 6.77:93.23 mol % with backlit height 

Analysis of the 3D image (Fig. 6) of the p-PGFPh:AA copolymer film (6.77:93.23 mol %) showed that 

the surface of this copolymer is not flat and has irregularities. A morphometric study of dimensional 

parameters requires consideration of the shape, radius of curvature, length, width, and height. The studied 

p-PGFPh:AA copolymer has a length of 105.39±9.86 nm, width of 110.49±11.69 nm, and height of 

20.58±3.56 nm. The use of the root-mean-square roughness parameter (Rq is the deviation of the profile 

points from its center line) and subsequent analysis of the degree of development of the relief show that the 

surface of the copolymer under study is heterogeneous in texture (Rq values are about 8.69±0.5 nm (Fig. 6). 

Analysis of the above three-dimensional image of the surface of the p-PGFPh:AA copolymer (6.77:93.23 

mol %) indicates that the analyzed surface of the sample is not flat and that there are irregularities of various 

sizes on its surface. 

Annealing the copolymers at 290 °C leads to deformation of the polymers (Fig. 7). Figure 7 (а) shows 

that p-PGFPh:AA particles have different shapes and sizes, ranging from several tens to hundreds of mi-

crons. 
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a — ×500; b — ×1500; c — ×3000; d — ×10000 

Figure 7. Micrograph of the morphology of the p-PGFPh:AA copolymer at the initial ratio of 6.77:93.23 mol %  

after heat treatment at 290 °C with successive magnification 

Figure 7(a) shows that the surface of the sample appears heterogeneous and has different textures with 

many microscopic bumps and pores (~20 nm). The convex part of the p-PGFPh:AA copolymer at the initial 

ratio of 6.77:93.23 mol % after heat treatment consists of sintered (shrunken) particles (Fig. 7, a). Upon fur-

ther magnification (Fig. 7, b), it is clear that the sintered part consists of smaller compacted parts (Fig. 7, c), 

the surface of which is within the range of 400–700 nm on further magnification (Fig. 7, d). Analysis of the 

micrographs shows that the structural components are strikingly similar, differing only in size. The SEM im-

ages suggest the presence of microphases within the copolymer structure, which could be attributed to ther-

mal treatment at 290 °C. The copolymer surface as illustrated in Figure 7 (b) and (c) appears to have an in-

consistent, irregular structure, comprising a mixture of globules and pores of various shapes and sizes, with 

agglomerates of undefined shapes ranging from 10 to 65 μm. This may be due to changes in the crystal struc-

ture or chemical reactions within the copolymer. 

 

 

а — 2D; b — 3D 

Figure 8. Images of the topography of the surface of the p-PGFPh:AA copolymer (6.77:93.23 mol %)  

after heat treatment at 290 °C 
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Figures 8 (a) and (b) show the p-PGFPh:AA copolymer with the characteristic topography 

(6.77:93.23 mol %) obtained using AFM: the surface is covered with spike-like protrusions, the width of 

which is 110.4±8.1 nm, the length is 25.1±2.7 nm, the average quadratic surface roughness Rq is 8.3±0.8 nm. 

The high flexibility (in comparison with the p-PGFPh:AA copolymer before firing) can be considered as one 

of the possible reasons for a slight increase in the surface roughness of this sample. 

Next, micrographs of samples of the copolymer composition (6.77:93.23 mol %) were obtained after 

heat treatment at 440 °C (Fig. 9). The micrographs show the surface of a copolymer of poly(propylene glycol 

fumarate phthalate) with acrylic acid after heat treatment at 440 °C. The surface of the sample appears great-

ly altered compared to the untreated sample (Fig. 9). Many small convex and depressed formations can be 

observed. These structures have dimensions within ~1.5 μm (Fig. 9, a). The surface of the sample also ap-

pears to be relatively smooth, but with small features at the micro level. The presence of acrylic acid in the 

copolymer can influence its morphology and structure (Fig. 9, b). 

 

  

a — ×500; b — ×1500 

Figure 9. Micrograph of the morphology of the p-PGFPh:AA copolymer at the initial ratio of 6.77:93.23 mol %  

after heat treatment at 440 °C with successive magnification 

As shown above, the process of sintering and, accordingly, the structure formation of the p-PGFPh:AA 

copolymer during heat treatment is not a spontaneous process. Based on this, the effect of unsaturated poly-

ester resin on the structure of the p-PGFPh:AA copolymer during heat treatment was investigated. Micro-

scopic studies were carried out on the p-PGFPh:AA copolymer, where the content of poly(propylene glycol 

fumarate phthalate) in the copolymer was 86.67 mol %. 

Figure 10 shows that significant changes in the morphology of the copolymer p-PGFPh:AA 

(86.67:13.33 mol %) were observed after heat treatment up to 240 °C. The copolymer film has an undefined 

architecture with a knobby surface, Figure 10 (a) and (d). 

These changes may be related to melting processes, structural reorganization, or possible chemical reac-

tions. Differences in the size and shape of structures may indicate heterogeneity in the sample after pro-

cessing. 

Next, micrographs of samples of the copolymer composition were obtained at the initial ratio of 

86.67:13.33 mol % after heat treatment up to 440 °C (Fig. 11). 

Numerous tiny convex structures with a diameter of approximately 1–5 micrometers are visible. These 

structures are uniformly distributed over the entire surface of the sample and may represent phase regions 

with distinct characteristics. The images (Fig. 11) do not show a specific orientation of pores and particles, 

which may indicate a random and disordered distribution of these elements on the surface. The micrograph 

indicates that heat treatment of the copolymer p-PGFPh:AA (copolymer at the initial ratio of 

86.67:13.33 mol %) results in the formation of pores and small particles on its surface. These structural 

changes can have various causes, such as the release of gases, changes in the crystal structure or chemical 

reactions. Pores and particles influence the physical and chemical properties of the p-PGFPh:AA copolymer 

(86.67:13.33 mol %). 
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а — ×500; b — ×1500; c — ×3000; d — ×10000 

Figure 10. Micrograph of the morphology of the p-PGFPh:AA copolymer at the initial ratio of 86.67:13.33 mol %  

after heat treatment up to 240 °C with successive magnification 

 

 
 

 

  

а — ×500; b, c — ×3000; d — ×10000 

Figure 11. Micrograph of the morphology of the p-PGFPh:AA copolymer at the initial ratio of 86.67:13.33 mol %  

after heat treatment to 410 °C with successive magnification 
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From Figures 10 and 11 it can be seen that as the degree of unsaturation in the copolymer (p-PGFPh 

content in the copolymer) increases, the cured products become less hard and more viscous. This relationship 

is due to a reduction in the cross-linking density resulting in fewer chains to support the load. 

Conclusions 

The paper discusses the findings of microscopic studies carried out on copolymers of p-PGFPh:AA be-

fore and after heat treatment. In contrast, the structure of the p-PGFPh:AA copolymer (6.77:93.23 mol %) is 

isomorphic both before and after heat treatment to 290 °C. However, if the p-PGFPh:AA copolymer 

(6.77:93.23 mol %) has a “popcorn” structure, then it is completely preserved even after heat treatment up to 

290 °C (Fig. 7, b and c). Consequently, the process of temperature exposure does not cause any change in the 

structure of the copolymer, and the morphology of polymers after heat treatment is determined only by the 

morphology of the original polymer. A scanning microscopy study of the cleavage surface of p-PGFPh:AA 

copolymers shows that the size of the smallest elements is ~20 nm (Fig. 7, a). Larger formations are also pre-

sent in all electron microscopic images, but in some cases, at magnifications of 500 to 10,000 (e.g. Fig. 7, b 

and c), they can be seen to be composed of smaller spherical particles of ~10 nm in size. The p-PGFPh:AA 

copolymer (86.67:13.33 mol %) has a completely different morphology. The structure of the p-PGFPh:AA 

copolymer (86.67:13.33 mol %) turns out to be close to the structure of networks, the average size of spheri-

cal formations is 25–45 nm (Fig. 10, b and c). Despite significant differences in the morphology of p-

PGFPh:AA copolymers at different component ratios, p-PGFPh:AA copolymers with monomer ratios of 

6.77:93.23 mol % and 86.67:13.33 mol % have the same properties — porous structure. Consequently, these 

properties are not due to the nature of supramolecular formations, but to the properties of smaller structural 

units of the network at the molecular level. It was also shown that when heated in a nitrogen atmosphere to 

800 °C, they formed the same amount of stable polymer residue, indicating the similarity of their thermal 

stability (Fig. 4). 

The results obtained suggest that the degradation of p-PGFPh:AA copolymers is a complex process. It 

involves the breaking chemical bonds by heat as well as structuring reactions between macromolecules and 

their decomposition products. It is important to note that selecting conditions for pyrolysis plays a significant 

role in increasing the thermal stability of polymeric materials. This is because pyrolysis can be used to selec-

tively modify the structure and properties of polymers. 
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Effect of Salt Content on Solubilization of Hydrophobic Polymer  

by Wormlike Micelles of Ionic Surfactant 

The effect of concentration of inorganic salt KCl on solubilization of hydrophobic polymer poly(4-

vinylpyridine) (P4VP) in aqueous solutions of ionic surfactant potassium oleate was experimentally investi-

gated. As was shown by rheology, in the range of concentrations from 1 to 5 wt.% of salt the polymer-free so-

lutions of surfactant mainly contain linear wormlike micelles (WLMs). The formation of branched WLMs 

was observed in the solutions containing 5‒9 wt.% of KCl. In the presence of higher salt content the phase 

separation occurred, indicating the formation of a highly branched saturated network of WLMs. Enhanced 

screening of the charged groups of potassium oleate by oppositely charged ions of KCl caused elongation and 

branching of micelles that reflected in zero-shear viscosity of the solutions passing through the maximum. In 

the phase diagram, the saturation concentration with P4VP of both linear and branched WLMs decreased with 

increasing salt content. In the case of linear WLMs, this could be explained by the constant number of em-

bedded polymer chains per 1 WLM, while simultaneously decreasing number of WLMs in the system. As for 

the branched WLMs, it was caused by shortening of the linear parts of micelles due to the formation of 

branching points. For this reason, almost no P4VP was dissolved in the solution containing the highly 

branched saturated network. 

Keywords: ionic surfactant, polymer solubilization, wormlike micelles, hybrid micelles, branched micelles, 

saturated network, rheology, phase diagram. 

 

Introduction 

Ionic surfactants are able to self-assemble into very long micelles with local cylindrical morphology. 

They are called wormlike micelles (WLMs) [1–4]. These micelles typically have a diameter of a few na-

nometers and a contour length of up to several micrometers producing micellar aggregates that resemble 

worms. These worms, when entangled in a transient network, impart significant macroscopic viscoelastic 

properties to solutions. Their viscoelastic properties are easy to manipulate because the non-covalently bond-

ed network of WLMs is highly sensitive to external conditions, such as the concentration of low molecular 

weight salt [5–10] or hydrophobic additives [1–3, 11–13]. Ions of salt screen the electrostatic repulsion of 

similarly charged surfactant head groups and induce the elongation of micelles and their branching [5–10], as 

they make hemispherical end caps of WLMs highly unfavorable. In contrast, hydrocarbons induce shortening 

of micelles and finally their transformation into microemulsion droplets, because they concentrate in the mi-

cellar core [14-15]. 

These properties of WLMs are of extended practical significance. In particular, they allow WLMs to be 

used as oil-sensitive thickeners for fracturing fluids in oil recovery [16–18]. In contrast to polymer-based 

fracturing fluids, the surfactant-based fluids have the advantage of not requiring the addition of breakers to 

reduce the viscoelasticity at the back flow of oil [19], because they spontaneously transform into microemul-

sion droplets upon contact with hydrocarbons. At the same time, for further transportation of oil through the 

pipeline the polymer chains possess an advantage — they provide higher drag reducing efficiency. The ad-

vantages of both surfactant- and polymer-based fluids for hydraulic fracturing and oil transportation can be 

combined while using hybrid WLMs of surfactant with embedded polymer chains. Such a system has recent-

ly been proposed [20]. It consisted of WLMs of potassium oleate armored with poly(4-vinylpyridine) (P4VP) 

polymeric chains [20]. 

However, all the experiments were carried out at a single salt concentration, whereas in practical appli-

cations different salt concentrations may be encountered. The salinity of the solution significantly affects the 

shape of hybrid micelles and the location of the polymer within them [21]. This, in turn, impacts the maxi-
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mum amount of polymer that can be solubilized inside the micelles and becomes one of the key parameters 

that govern hydraulic fracturing and drag reduction when using hybrid micelles. 

The present paper is aimed at the experimental investigation of the effect of salt on the phase behavior 

of the hybrid micelles of anionic surfactant potassium oleate with embedded hydrophobic polymer P4VP and 

the determination of the maximum amount of polymer that can be solubilized by the micelles at different 

concentrations of inorganic salt KCl. 

Experimental 

Materials. Surfactant potassium oleate (TCI Europe, purity >98 %), salt KCl (Sigma-Aldrich, purity > 

99.5 %) and polymer P4VP (Sigma-Aldrich, Mw=160000 g/mol, contour length 380 nm) were used for 

preparation of hybrid surfactant/polymer micelles. Polydispersity of P4VP, as evaluated by dynamic light 

scattering, was equal to 0.06 (see Supplementary Materials for details). P4VP was dissolved in ethanol 

(Merck, purity > 99 %). Other solutions were prepared with de-ionized water purified using Millipore Milli-

Q system. The pH of aqueous solutions was maintained at 11 with KOH (Acros Organics, purity > 99 %). 

Sample preparation. A series of polymer-free micellar solutions with constant concentration of surfac-

tant equal to 47 mM and salt concentration ranging from 1 to 11 wt% were prepared by mixing potassium 

oleate and KCl with water using a magnetic stirring bar for 1 day. At high salt concentration (9, 10 and 

11 wt%) the solutions became phase separated (Fig. 1). 

 

 

Figure 1. Phase separated polymer-free aqueous solutions of 47 mM potassium oleate containing different  

concentrations of KCl: 9 (a), 10 (b) and 11 wt% (c) at pH 11. The horizontal dashed lines indicate the interfaces 

As P4VP is insoluble in water, the following method, previously described elsewhere [21], was used to 

prepare hybrid potassium oleate/P4VP micelles. First, a stock solution of hybrid potassium oleate/P4VP mi-

celles was obtained in the absence of salt. For this purpose, an aqueous solution of potassium oleate was 

poured onto the thin film of polymer P4VP in the vial and stirred for 24 hours. The polymer film was prelim-

inary formed by evaporation of ethanol from the P4VP solution during 24 hours at room temperature. The 

concentration of P4VP in the stock solutions was varied from 0 to 0.4 wt%. Then an appropriate amount of 

potassium oleate with water was added to the same vial to prepare solutions of hybrid micelles at different 

salt concentrations. 

Rheology. The steady shear and shear oscillatory rheology was measured on a stress-controlled Anton 

Paar Physica MCR 301 rheometer. Aluminum cone-plate (50 mm, 1°) and Couette (i.d. 24.661 mm, o.d 

26.667 mm) geometries were used as measuring cells for viscous and fluid samples, respectively. Peltier el-

ements were used to maintain a constant temperature of 20 °C. Steady shear tests were conducted at shear 

rates ranging from 3·10-3 to 300 1/s. The oscillatory shear tests were carried out in the frequency range from 

2·10-2 to 200 rad/s within the viscoelastic linear regime as previously determined by strain measurements. 

Determination of the saturation concentration of hybrid micelles at high salt content. In the solutions of 

hybrid micelles with a high amount of embedded P4VP, at all studied concentrations of salt, the phase sepa-

ration occurred leading to the precipitation of polymer. At low concentrations of KCl, the saturation concen-

tration of hybrid micelles was visually detected by the appearance of turbidity. When a high amount of KCl 

was added (7, 8 and 9 wt%), for more accurate determination of the saturation concentration, the solid pre-

cipitate was carefully separated from the homogeneous liquid phase and dried in an oven until a constant 

mass was obtained. After weighing the dried precipitate, the dependencies of thus determined mass of the 

precipitate on the initial concentration of added P4VP at 7, 8 and 9 wt% of KCl were obtained. They repre-

sent straight lines (Fig. 2). The x-coordinates of their intersections with the horizontal axis correspond to the 

https://ejc.buketov.edu.kz/index.php/ejc/article/view/92/81
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saturation concentrations of hybrid potassium oleate/P4VP micelles in the presence of different concentra-

tions of KCl. 
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Figure 2. The dependencies of the mass of the precipitate on the initial concentration of added P4VP in 47 mM aqueous 

solutions of potassium oleate containing different concentrations of KCl: 7 wt% (circles), 8 wt% (squares), and 9.0 wt% 

(triangles) at pH 11. The arrows indicate the position of the intersection of the dependencies with the horizontal axis 

Results and Discussion 

Effect of salt on polymer-free micelles. The steady shear and oscillatory rheological data of the poly-

mer-free solutions of potassium oleate at different concentrations of KCl are shown in Figures 3a and b, re-

spectively. In Figure 3a at low shear rates the plateau of the viscosity is observed (i.e. zero-shear viscosity 

η0). In the literature [1, 22–24], the plateau-value η0 is attributed to the viscosity of the solution undamaged 

by shear (Figure 3a). The subsequent decrease in viscosity, called shear-thinning [9, 24–26], is the result of 

the alignment of the chains along the direction of the shear flow (Fig. 3a). 
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Figure 3. Apparent viscosity versus shear rate (a) and storage G՛ (filled symbols) and loss G՛՛ (open symbols) moduli 

versus frequency of the applied stress ω (b) for 47 mM potassium oleate solutions, containing different concentrations 

of KCl: 4.0 wt% (circles), 6.0 wt% (diamonds), 7.0 wt% (pentagons), 8.5 wt%. (squares) and 9.0 wt% (stars) at pH 11. 

The arrows indicate the position of the intersection of the G՛(ω) and G՛՛(ω) dependencies 

The value of η0 passes through the maximum with increasing concentration of KCl (Fig. 4). As the K+ 

ions of salt screen the repulsion of the negatively charged headgroups of potassium oleate on the surface of 

micelles, the increase of the amount of KCl in the solutions induces the transition of spherical micelles into 

the wormlike ones and their further elongation. This results in an increase of the η0 value by 3 orders of 

magnitude (Fig. 4). At concentrations of KCl higher than 6 wt.%, the zero-shear viscosity decreases due to 

the formation of branches in the micelles [10, 26-27]. The relaxation mechanism of branched WLMs, which 

represents sliding of the branching points along the micelle, requires less energy, than process of reptation in 

semidilute solutions of linear micelles [10, 28–30]. The phase separation in the samples with high salt con-
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tent (Fig. 1), is probably related to the formation of a saturated network of WLMs, which contains many 

branching points and almost no end-caps [26, 31-32]. 
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Figure 4. Zero-shear viscosity η0 of polymer-free solutions (blue) and phase diagram of potassium oleate/P4VP hybrid 

micelles (red) versus concentration of KCl. Open circles indicate homogeneous and filled circles indicate phase  

separated samples. Solid line indicates the onset of phase separation in potassium oleate/P4VP hybrid micelles.  

The grey square limits the region of phase separation in 47 mM potassium oleate solutions without polymer at pH 11 

The dependencies of storage Gʹ and loss Gʹʹ moduli on the frequency ω of shear stress applied to the 

micellar solutions with different salt content are depicted in Figure 3b. At high frequencies, Gʹ >Gʺ, and the 

solutions demonstrate an elastic response to the applied stress. According to literature [2, 27, 33], the plateau 

value of storage modulus G0 is proportional to the amount of elastically active entanglements between the 

micelles in the physical network. At low frequencies, Gʹ < Gʺ, and the samples behave as viscous liquids. 

The studied samples demonstrate Maxwellian behavior with single relaxation time [10, 23-24, 34]. The ab-

scissa intercept ωc of Gʹ(ω) and Gʺ(ω) defines the relaxation time of the samples τ, as τ= ωc
-1 (Fig. 3b). 

In Figure 3b a small increase of the plateau modulus G0 at high salt concentration is observed. This may 

be due to the intermicellar linkages produced by branching of WLMs occurring upon screening of the repul-

sion of similarly charged headgroups of surfactant with oppositely charged ions of salt. Simultaneously, the 

relaxation time τ is decreasing with increasing amount of branching points, since more rapid relaxation oc-

curs (Fig. 3b) as a result of sliding of branches along the worms. Similar results have been obtained previ-

ously for other systems containing WLMs of ionic surfactants [1, 9-10, 26, 35-36]. 

Solubilization of P4VP by WLMs at different salt content. In order to investigate the solubilization of 

P4VP by micelles of potassium oleate at different concentrations of KCl, the following phase diagram was 

constructed (Fig. 4). At all the concentrations, a solid precipitate was formed when a large amount of poly-

mer was added to the system. In the solution with 6 % KCl, elemental analysis previously demonstrated that 

the precipitate was the pure polymer (without surfactant) [37]. The supernatant represented the solution of 

hybrid micelles saturated with P4VP. Therefore, in this study, the formation of a precipitate indicates that the 

micelles have reached their saturation with a polymer. 

From Figure 4 it can be seen that the concentration of saturation of micelles with polymer decreases 

with increasing salt content. In the range of 1–5 wt.% of KCl mainly linear WLMs are present in the poly-

mer-free solutions. The viscosity of the solutions increases due to elongation of micelles (Fig. 4). At constant 

concentration of surfactant, the elongation of micelles is accompanied by a decrease of the total number of 

micelles in the system. According to the literature [37], 1-2 macromolecules of P4VP are embedded into lin-

ear WLMs of potassium oleate. Solubilization of a larger number of macromolecules is energetically unfa-

vorable, since leads to the drop of entropy. As a result, the total amount of P4VP chains in saturated hybrid 

micelles decreases. 

Another possible reason for the decrease in the saturation concentration of linear WLMs could be the 

increase of the packing density of surfactant molecules in their central part. Higher screening of potassium 

oleate anions by counterions of KCl will provide their closer approach to each other and reduction of the 

volume at the boundary between the hydrophobic core and hydrophilic corona of the micelles, where P4VP 

is localized [37-38]. 
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The rheological data (Fig. 3a) demonstrated the drop of viscosity of the solutions without polymer in 

the range 5–9 wt.% of KCl (Fig. 4) due to the enhanced amount of branched WLMs. The formation of 

branching points in the micelles appears simultaneously with shortening of their central cylindric parts [39-

40], where P4VP chains are embedded in the hybrid micelles [37]. Consequently, the presence of branched 

micelles can lead to a decrease in the concentration of saturation with polymer (Fig. 4). It is unlikely that the 

polymer will be solubilized at the branching points due to their high mobility. This accounts for the near-

absence of solubility of PVP in systems with more than 9 wt% of KCl (Fig. 4). 

Thus, the increasing ionic strength of solutions similarly affects the solubilization of P4VP, both, by 

linear and branched WLMs of potassium oleate (Fig. 4). 

Conclusions 

According to rheological data, in aqueous solutions of 47 mM potassium oleate with 1–5 wt% of KCl 

mostly linear WLMs are present. The zero-shear viscosity η0 of the solutions increases with increasing length 

of WLMs due to screening of the electrostatic repulsion of surfactant headgroups. Branched WLMs are 

formed at KCl concentration between 5 and 9 wt%. The faster relaxation mechanism of branched WLMs 

results in the decrease in η0 and relaxation time τ as evidenced by rheology. The concentration of P4VP in 

the saturated hybrid micelles decreases in the whole range of KCl concentration studied. For linear WLMs, it 

is the result of a constant number of polymer chains being embedded per 1 WLM at the time when the total 

number of WLMs decreases in the system. As to the branched WLMs, the drop of saturation concentration is 

caused by low probability of P4VP solubilization by mobile branching points, where the boundary between 

the hydrophobic core and hydrophilic corona of the micelles, where P4VP is localized, is reduced, and the 

reduction of linear parts of the micelles. For this reason, almost no P4VP was dissolved in the solution with 

9 wt.% of KCl, which contained the highly branched saturated network of WLMs. 
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Fabrication of Hydrophobic PET Track-Etched Membranes  

using 2,2,3,3,4,4,4-Heptafluorobutyl Methacrylate  

for Water Desalination by Membrane Distillation 

The world is currently facing a drinking water problem. Human activity, climate change and pollution of ex-

isting water bodies are exacerbating the problem. The scientists around the world are currently trying to puri-

fy water using effective and inexpensive methods. One such method is membrane distillation. Membrane dis-

tillation is a versatile thermally driven membrane separation process. This method of water purification has 

the potential to remove salts and other non-volatile components. The work is concerned with the desalination 

of salt solutions by membrane distillation using ion-track membranes based on polyethylene terephthalate 

(PET). PET ion-track membranes (PET TMs) were modified by photoinitiated graft polymerization of 

2,2,3,3,4,4,4-heptafluorobutyl methacrylate (HFBMA) to make them hydrophobic. Optimal polymerization 

conditions (monomer concentration, reaction time) were determined, which led to an increase of water CA 

from 51 to 105°. The obtained membranes were used to purify the solution from NaCl. The effect of salt con-

centration as well as membrane properties on performance and degree of purification was studied. The results 

show that large pore size PET TMs modified with HFBMA has the potential to desalinate water in an effi-

cient manner. 

Keywords: Ion-track membranes, membrane distillation, UV-initiated grafting, poly(ethylene terephthalate), 

water desalination, fluorine-containing compounds. 

 

Introduction 

Water plays a vital role in sustaining life on Earth. Although most of the planet is made up of water, but 

water scarcity is a major concern for the world's population [1]. Fresh water, which is essential for the sur-

vival of plants and mammals, including humans, accounts for only 3 % of the hydrosphere. The rest is salt 

water, which is not suitable for human consumption [2]. Population growth, rapid industrial development, 

urbanization and climate change are all increasing the demand for water and exacerbating the problem of 

pollution of available water bodies. All of these factors contribute significantly to the global water deficit. 

The search for effective and affordable methods of desalination is urgent [3]. 

A significant part of the Earth is made up of salt water. There is an urgent need to desalinate this water 

by removing salts and minerals [4]. There are currently several methods of water treatment reverse osmosis, 

nanofiltration, thermal distillation and membrane distillation (MD) and more [5, 6]. Among all these meth-

ods, membrane distillation has several advantages, including operation at low temperatures and hydrostatic 

pressures, high water recovery, high salt rejection (especially those with a salinity between 70 and 300 g salt 

per kg solution), less sensitivity to membrane fouling, and the potential for pollutant removal and usage of 
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renewable energy resources. MD has realized several types [7] and successfully applied in many fields, such 

as purification of sea water, industrial and mining effluents from heavy metals, dyes, radioactive waste, acid 

solutions [8–12]. 

As mentioned above, the main characteristics of MD membranes are porosity and hydrophobicity. As 

materials with high suitability for MD applications, polymeric, inorganic and ceramic membranes have at-

tracted much attention [13]. Polymeric membranes can be easily modified. They have low thermal conduc-

tivity, typically in the range of 0.1–0.5 Wm–1·K–1. In general, MD membranes can be produced by track etch-

ing, sintering, phase inversion, electrospinning, etc. In addition, several types of membranes are produced by 

a combination of the abovementioned methods. MD requires membranes with specific characteristics such as 

high LEP, optimal thermal conductivity, stability, non-fouling properties, superior permeability as well as 

high purification degree [14]. 

Ion-track membranes (TMs) have these characteristics. TMs have a unique properties and structure that 

includes microscopic channels through which vapour transport occurs [15, 16]. These membranes provide 

high separation efficiency, which is particularly important in desalination processes [17]. Various ion-track 

membranes (TMs), including PVDF, PE, PDMS, PP, PTFE and PET have been used for membrane distilla-

tion [18]. 

In our previous studies [9, 19], PET TMs were modified with styrene and fluorosilane to small pore size 

by photoinitiated graft polymerization. MD has successfully used these membranes for both water desalina-

tion and the decontamination of low-level liquid radioactive waste. This article presents the preparation of 

large pore size hydrophobic PET TMs by grafting 2,2,3,3,4,4,4-heptafluorobutyl methacrylate (HFBMA) and 

their use for water desalination. The unique properties of fluorine containing compounds explain the choice 

of this monomer. They have low surface energy, their chemical backbone formed by stable carbon-fluorine 

bonds (∼485 kJ mol–1), and the particular electronic structure of fluorine, is characterized by high electro-

negativity, low polarizability and a small van del Waals radius (1.32 Å). As a result, there are weak disper-

sion interactions on the surface of fluorocarbons, and the wettability and surface tension of fluoropolymers 

are very low [20]. 

Experimental 

Reagents 

2,2,3,3,4,4,4-heptafluorobutyl methacrylate (HFBMA) (97 %), N,N-dimethylformamide (99,9 %) 

(DMF), benzophenone (BP) (97 %), NaCl, ethanol (98 %), 2-propanol (99,8 %). All monomers were passed 

through a chromatographic column to remove the inhibitor. All NaCl solutions were prepared in deionized 

water (18.2 MΩ). 

PET TMs Preparation and Graft Polymerization of HFBMA 

The PET TMs were obtained by irradiating Hostaphan® brand PET films (Mitsubishi polyester film, 

Germany) with a thickness of 12 µm using Kr ions at an energy of 1.75 MeV/nucleon and an ion fluence of 

1×10⁶ ions/cm². This was conducted using the DC-60 ion accelerator (Astana Branch of the Institute of Nu-

clear Physics of the Republic of Kazakhstan). Irradiated PET film was etched in 2.2 M NaOH solution at 

85 °C at 6–20 min. After chemical etching, the samples were washed in acetic acid and deionized water. 

Membranes were obtained with pore density of 1×106 pores/cm2 and different pore sizes depending of etch-

ing time. 

The samples were then immersed in the initiator (5 % BP in DMF) for 24 h, washed in ethanol and 

dried in air. The amount of BP adsorbed on the surface of PET TeMs was determined by UV-vis-

spectroscopy at 253 nm [21]. According to the calibration curve, the concentration of BP was 580 µmol/g. 

This value was kept constant. After PET TMs were placed in a solution of HFBMA in 2-propanol. HFBMA 

concentrations ranged from 1–10 %. The reaction mixture was flushed with Ar to remove the dissolved oxy-

gen. Graft polymerization was carried out using OSRAM Ultra Vitalux E27 (UVA: 315–400 nm, 13.6 W; 

UVB: 280–315 nm, 3.0 W) for 30–60 min. After reaction the samples were washed in 2-propanol and water 

and dried. 

Methods of Characterization of the PET TeMs 

Chemical changes before and after modification were measured by Fourier Transform Infrared (FTIR) 

spectrometer (InfraLUM FT-08) with ATR accessory (GradiATR, PIKE). Spectra were recorded in the range 

of 400–4000 cm−1, with 20 scans and a resolution of 2 cm–1 at room temperature. 

The morphology and elemental composition of the membrane surface was analyzed using a Hitachi TM 

3030 with a Bruker XFlash MIN SVE EDX instrument at 15 kV acceleration voltage. The EDX spectrum is 
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selected in 120 seconds. The sample is coated with a layer of gold prior to analysis. The results are presented 

as an average based on three data points. 

CA was assessed by the static drop method and measured at five locations on the sample at room tem-

perature. 

Direct Contact Membrane Distillation 

Direct Contact Membrane Distillation (DCMD) has been applied for water desalination. Figure 1 shows 

a scheme of the DCMD. 

 

 

Figure 1. DCMD scheme 

Type–T thermocouples were used to control the temperature at the inlets and outlets of the membrane 

cell, temperature differential was maintained at 70 °C. Peristaltic pumps were used to control permeate 

(13.5 ± 0.3 L/h) and feed flow (27.3 ± 0.3 L/h). Every 30 seconds, the collected liquid was weighed 

(± 0.01 g). The degree of purification was controlled by conductimetry measurements. The performance and 

degree of purification were computed based on the equations set out in [9]. 

Results and Discussion 

The modification of PET TMs surfaces were functionalized according to the scheme presented in Fig-

ure 2. During the process of chemical etching, the hydrolysis of ester groups in the PET film led to the 

breakdown of its backbone. As a result, carboxylic and hydroxyl groups at the chain ends, providing reactive 

sites for monomer attachment during polymerization. 

 

 

Figure 2. Graft polymerization of HFBMA 
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The polymerization process was influenced by monomer concentration, polymerization time and dis-

tance from the UV-source. The effect of the distance from the UV-lamp on the polymerization process was 

studied. When the distance exceeded 7 cm, polymerization did not occur, as no characteristic peaks were ob-

served in the FTIR-spectra. As the distance decreased, the solvent was rapidly volatilized. Consequently, 

7 cm was identified as the optimal distance. 

Qualitative analysis of the obtained PET TMs samples was conducted using FTIR spectroscopy. Fig-

ure 3 depicts the FTIR spectroscopy results of the PET TMs before and after grafting. Before graft polymeri-

zation, the FTIR spectra exhibit the fluctuations, which are consistent with the data in work [19]. After modi-

fication with monomer concentration of 7 and 10 % in the FTIR spectra show the presence of peaks at 

910 cm–1 belonging to the C-F2 group and 1190 cm–1 belonging to the C-F group [22, 23]. 

 

 

Figure 3. FTIR spectra of initial and modified PET TMs at different monomer concentration 

The water repellent effects of the PET TMs were evaluated by measuring CA for each grafted sample 

(Fig. 4). The chemical composition and surface roughness have a significant effect on the CA. 

 

 
51°±3 73º±3 84º±5 85º±3 105º±2 

Figure 4. CA for initial PET TMs (a) and grafted PET TMs for 60 min  

at different concentrations (1 % (b), 5 % (c), 7 % (d) and 10 % (e)) 

As shown in Figure 4, the membrane surface becomes hydrophobic with increasing monomer concen-

tration. The CA for the sample at a HFBMA concentration of 10 % averaged 105º±2º, and the water droplet 

did not spread for a long time. As the monomer concentration decreased, the water droplet spread faster and 

seeped through the membrane. The presence of HFBMA on the surface leads to increased surface roughness 

of PET TeMs, which we can observe using SEM (Fig. 5). 

SEM images show that the PET TMs surface is uniform at 1 % and 7 % monomer concentration. The 

pores are open and not clogged with monomer, pore diameter decreases by 10–40 nm. At a HFBMA concen-

tration of 10 %, a thick polymer layer forms, and the pores of the TM are not clogged with polymer. The 

pore diameter decreases by ~100 nm. The surface exhibits an uneven distribution of the polymer layer, char-

acterized by polymer “islands” in certain regions that display high resistance to solvents. These islands in-

crease roughness and form a hydrophobic layer. 

Having obtained these results, the effect of grafting time on the photoinitiated graft polymerization pro-

cess was studied. 10 % monomer was chosen as the optimum monomer concentration. Following the modifi-

cation, the emergence of peaks at 910 cm–1 (C-F2 ring) and 1190 cm–1 (C-F ring) was detected on the FTIR 

spectra in various reaction time. With increasing polymerization time and monomer concentration, formation 

of homopolymer was observed, which filled the pores of the TMs. 
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a  — initial PET TMs; b — 1 % HFBMA; c — 7 % HFBMA; d — 10 % HFBMA (side 1); e — 10% HFBMA (side 2) 

Figure 5. SEM microphotographs of PET TMs 

As the grafting time increases, the CA changes from 59º±2º at 30 minutes to 105º±2º at 60 minutes. 
Figure 6 depicts the CA images of both unmodified and modified PET TMs over the time span from 30 to 

60 min. The TMs surface becomes hydrophobic and a drop of water at a reaction time of 60 min does not 

spread for a long time. Conversely, at shorter polymerization times, the surface remains water-insoluble, and 

the drop spreads rapidly and penetrates through the membrane's pores. 

 

 
51°±3 59°±2 76°±3 105°±3 

a — initial PET TeMs; b — 30 min; c — 45 min; d — 60 min 

Figure 6. Effect of polymerization time on CA 

The elemental composition was studied using EDX. According to the EDX analysis, the concentration 

of fluorine increases with both the reaction time and the monomer concentration. The maximum fluorine 

concentration is recorded in the sample where the monomer concentration is 10 %, and the polymerization 

time is 60 minutes. 

The burst strength was evaluated at a pressure that would damage a circular sample of 1 cm2 surface. 

Burst strength for initial PET TMs was more than >0.449 MPa. For modified membranes with pore size of 

640 nm, burst strength is 0.425 MPa, for 960 nm = 0.438 MPa and for 1290 nm more than >0.449 MPa (Ta-

ble). 

T a b l e  

Elemental analysis, CA and pore size were obtained for PET TMs under different grafting parameters 

№ 

sample 
Grafting time, min 

HFBMA 

concentration, % 
CA, °±3° 

Pore diameter (from 

SEM analysis), nm 
Concentration of F, % 

1 0 – 51 2473±121 – 

2 30 10 59 2471±94 0.89±0.46 

3 45 10 76 2425±64 1.018±0.25 

4 60 10 105 2399±91 13.00±1.85 

5 60 7 85 2419±95 0.44±0.15 

6 60 1 73 2463±149 0.3±0.1 

а b c

d е

a                          b                     c                     d                      



Shakayeva, A.Kh., Yeszhanov, A.B. et al.  

86 Eurasian Journal of Chemistry. 2024, Vol. 29, No. 2(114) 

Thus, according to the results of the experiment, the optimal conditions for graft polymerization of 

HFBMA are the distance from the UV-lamp 7 cm, HFBMA concentration 10 % and reaction time 60 min. 

The formation of a polymer layer on the surface of PET TMs was demonstrated by EDX, FTIR spectrosco-

py, SEM images and CA. 

Obtained hydrophobic PET TMs at optimal grafted parameters were used for water desalination process 

by membrane distillation. Membranes with different pore sizes (640, 960, 1290 and 2400 nm) were taken for 

the process. In order to simulate practical conditions, salt concentrations were gradually increased from 7.5 

to 30 g/L. After each experiment, the membranes were washed in warm water for 12 hours to remove salt 

residues. However, these membranes did not remove salt from the water because of LEP value is not high 

enough. The results of water desalination using modified membranes are shown in Figure 7. 

 

 

Figure 7. Effects of pore diameter on MD performance at different NaCl concentrations 

The data illustrated in the graphs indicate the effect of varying NaCl concentration on water flux and 

degree of salt rejection. A decrease in water flux is evident with an increase in pore diameter from 600 to 

1200 nm. Furthermore, a reduction in water flow is observed with the rise in NaCl concentration from 7.5 to 

30 g/L. Increasing the size of pores in the membrane enhances the available space for water passage, leading 

to a higher rate of water flow through the membrane. This is achieved by reducing hydraulic resistance and 

augmenting the membrane's surface area for water passage. In addition, in highly concentrated solutions 

there is a decrease in water activity and a change in viscosity which affect the water flux [24, 25]. The pore 

diameter has a strong effect on the salt rejection, as can be seen in Figure 8. TMs with pore sizes of 640, 960 

and 1290 nm have a salt rejection of 85.9 %, 63.5 % and 59.2 % respectively. This phenomenon is due to the 

non-uniformity of the grafted layer and thus insufficient hydrophobicity of the membrane. As a result, salts 

that were originally intended to be retained by the membrane begin to penetrate through it, reducing the salt 

rejection [9]. 

Conclusions 

In this study, a water-repellent membrane was developed by polymerization of HFBMA onto porous 

PET TMs for desalination via DCMD. The optimal parameters for the photoinitiated graft polymerization of 

HFBMA were determined as a UV lamp distance of 7 cm, a monomer concentration of 10 %, and a polymer-

ization time of 60 min. The PET TMs obtained were analyzed using FTIR spectroscopy, SEM and CA meas-

urements. The polymer layer deposited increased surface roughness, resulting in hydrophobic properties with 

a water contact angle of 105°±3°. This hydrophobic coating conferred physicochemical stability and anti-

wetting properties to the fabricated PET TMs, making them suitable for membrane distillation. PET TMs 

with larger pore diameters exhibited a lower degree of salt rejection but demonstrated high water flux due to 

an increased likelihood of liquid permeation. The most significant correlation between water flux and salt 

rejection was observed for PET TMs with a pore diameter of 650 nm. 
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Natural Polyelectrolyte Hydrogels  

with Two Types of Cross-Links with Different Energy 

For the first time, gels of a polymer cross-linked by two types of ionic cross-links of different energies, name-

ly trivalent chromium (III) ions and divalent iron (II) ions, were prepared. The negatively charged polysac-

charide xanthan, a polyelectrolyte of natural origin, was used as a polymer. A study of xanthan gels cross-

linked with each cross-linker separately was carried out to identify the optimal concentrations of each cross-

linker for the production of a double cross-linked gel. The mechanical properties of hydrogels under oscillato-

ry shear deformations were then studied. It was demonstrated that the simultaneous use of two cross-linkers 

resulted in a synergistic increase in the elastic modulus (plateau storage modulus) compared to gels cross-

linked with each cross-linker separately. For a gel with two types of cross-links, the elastic modulus was 

16 Pa. In contrast, for gels cross-linked with either chromium (III) cations or iron (II) cations, the elastic 

modulus was approximately 0.6 and 0.5 Pa, respectively. The strong effect can be attributed to the different 

nature of cross-linking between xanthan macromolecules and chromium (III) and iron (II) cations, as well as 

the different strength of the cross-links formed. The optimal range of pH values was determined in which a 

synergistic increase in the elastic modulus of gels with two types of cross-links was observed compared to the 

corresponding gels cross-linked with each cross-linker separately. Consequently, the concurrent utilization of 

two cross-linking agents that generate cross-links with disparate energy levels represents an efficacious strat-

egy to improve the tensile strength of polymer hydrogels. 

Keywords: polymer gel, polysaccharide, xanthan, polymer network, polyelectrolyte, cross-linking, viscoelas-

ticity, rheological properties. 

 

Introduction 

In recent years, the creation and study of hydrogels with high mechanical strength has attracted consid-

erable interest [1–11]. An urgent problem is the search for new ways to increase the mechanical properties of 

hydrogels so that they can withstand high mechanical loads. One such method is the simultaneous use of 

several different cross-linkers with different properties. A recently proposed approach in the literature in-

volves the creation of gels with two distinct types of cross-linking: strong covalent and weak non-covalent 

(“physical”) [12–15]. This approach extends the principle underlying the creation of the so-called “double” 

networks [16] to single polymer networks: when deformed, strong covalent cross-links maintain gel elastici-

ty, while weak ones break, acting as “sacrificial” bonds, and provide energy dissipation in a sufficiently large 

volume, which prevents the spread of the break and gel destruction. 

A number of networks cross-linked by chemical covalent and “physical” cross-links have been pro-

posed to date. Ionic cross-links are often used as “physical” cross-links [17]. However, there are practically 

no examples of gels cross-linked simultaneously by two types of ionic cross-links with different energies. 

This approach appears to offer considerable potential, as the type of ions employed can be varied to alter the 

ionic cross-linking energy over a broad spectrum. 

Thus, the purpose of this work is to prepare polymer gels cross-linked simultaneously with two types of 

ionic cross-linkers of different energies and to study their mechanical properties in comparison with the cor-

responding gels cross-linked with each cross-linker separately. The polysaccharide xanthan, which has nega-

tively charged carboxylate groups, was selected as a polymer, and chromium Cr3+ and iron Fe2+cations, 

which have different charge values and, accordingly, different binding energies with the polymer, were used 

as cross-linkers. 
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Experimental 

Materials 

The xanthan gum Ziboxan F200 was procured from the company Deosen Biochemical Limited. The 

chemical structure of this polysaccharide is shown in Figure 1. Its molar mass amounts to 1,000,000 g/mol 

(and the degree of polymerization is approximately 1,100), as determined by viscometry in a previous 

study [18]. Previously reported 1H NMR data [18] indicates that the degrees of substitution by acetyl and 

pyruvate groups, expressed in the number of these groups per monomer link, are equal to 0.56 and 0.41, re-

spectively. 

Chromium (III) chloride hexahydrate (purity 98 %), iron (II) sulfate heptahydrate (purity 99 %), sodium 

azide (purity 99.5 %) provided by Sigma Aldrich were used as received. All solutions were prepared with 

distilled deionized water from the Milli-Q system (Millipore). The pH values of the samples were adjusted 

with sodium hydroxide (purity 98 %) from Acros and hydrochloric acid (purity 99 %) from Uralkhiminvest. 

 

 

Figure 1. Chemical structure of the polysaccharide xanthan 

Preparation of Samples 

Firstly, a 2 wt% aqueous solution of xanthan was prepared by dissolving a calculated amount of the 

polymer in distilled deionized water in the presence of 3 mM sodium azide, a bacteriostatic agent, at agita-

tion with a magnetic stirrer during 24 h. Secondly, 1 wt% aqueous solutions of cross-linkers (chromium 

chloride and iron chloride) were prepared by stirring for 5–10 min. Subsequently, the samples were left for 

48 hours to allow hydrolysis of Cr3+ and Fe2+ ions to proceed, as previously described [19]. 

Gels with one or two types of cross-links were prepared by simultaneous mixing of aqueous solutions 

of xanthan, each of the cross-linking agents and acid or alkali (1M KOH or 1M HCl) in required proportions. 

Then the system was stirred intensively for 2-3 min and left for 7 days for cross-linking. The preliminary 

experiments indicated that the time needed for cross-linking was the time required for the xanthan solution to 

gel, i.e. to change from a viscoelastic fluid to a viscoelastic solid, as described in [20]. 

Rheometry 

The mechanical properties of the hydrogels were studied under shear deformation using an Anton Paar 

Physica SmartPave 102 rotational rheometer, as described in detail elsewhere [21]. For these experiments, 

cylindrical gel samples (8 mm in height, 25 mm in diameter) were prepared. The measurements were carried 

out using a plane-plane measuring cell with a diameter of 25 mm at a temperature of 20.00 ± 0.05 °C. 

A hood with Peltier elements controlling the temperature was used to prevent solvent evaporation during the 

experiments. 

The measurements were carried out in the harmonic oscillation mode, wherein the frequency dependen-

cies of the storage modulus (G') and loss modulus (G'') were recorded at varying frequency ω from 0.04 to 

50 s–1. All experiments were performed in the linear viscoelastic regime at strain amplitudes (γ) between 

1 and 5 %, during which the storage and loss moduli are independent of the amplitude. 
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Results and Discussion 

In the present work, we prepared and studied hydrogels of xanthan polysaccharide cross-linked simul-

taneously by two types of ions, namely chromium (Cr3+) and iron (Fe2+). Xanthan monomer links contain 

negatively charged pyruvate and carboxylate groups, and cross-linking by metal ions occurs mainly by py-

ruvate groups, although less accessible carboxylate groups can also participate in the cross-linking [22]. 

Firstly, to determine the optimal conditions for the formation of gels with two types of cross-links, we 

studied the systems cross-linked by each cross-linker separately with varying concentrations of the cross-

linkers. Figure 2 illustrates the dependences of the storage modulus at high frequencies (which, in the case of 

gels, is analogous to the elastic modulus) on the concentration of each of the cross-linkers. It can be observed 

that the curve exhibits a similar characteristic appearance for both cross-linkers. At low cross-linker concen-

trations, the G' values are low (approximately 0.1 Pa), and no gel formation occurs. Subsequently, when the 

cross-linker concentration is increased, the storage modulus begins to increase, which corresponds to the on-

set of gel formation. G' reaches a plateau at high cross-linker concentrations. This is explained by the for-

mation of cross-links by all available functional groups, which results in the inability to form new cross-links 

with further increases in the cross-linker concentration. 
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Figure 2. Dependences of the storage modulus G' at high frequencies (modulus of elasticity)  

on the cross-linker concentration (СrCl3 — circles, FeSO4 — squares)  

for aqueous solutions containing 0.1 wt. % xanthan. Temperature is 20 °C. 

It is notable that the curve for Fe2+ ions is shifted with respect to the curve for Cr3+ ions in the region of 

significantly elevated cross-linker concentrations. This phenomenon appears to be associated with a dimin-

ished cross-linking efficacy of xanthan by divalent ions relative to trivalent ions [23]. Thus, different concen-

trations of each of the ions are required to obtain gels with two types of cross-linking. The concentrations 

indicated by the arrows in Figure 1 (0.32 mM CrCl3 and 13 mM FeSO4), which are close to the onset of the 

gel formation, were used. 

There were obtained transparent, single-phase, and homogeneous xanthan hydrogels cross-linked by 

both types of cross-linkers simultaneously as well as by each cross-linker separately. Figure 2 shows fre-

quency dependences of the storage modulus and loss modulus for these hydrogels. It can be observed that the 

addition of a single cross-linker, either CrCl3 or FeSO4, results in the formation of gels. This is evidenced by 

the fact that the G' values are consistently greater than the G" values across the entire frequency range. How-

ever, the gels are relatively weak, with a modulus of elasticity (storage modulus of accumulation at the plat-

eau G0) of less than 1 Pa. When two cross-linkers are used simultaneously, a gel is also formed, and a syner-

gistic increase in the elastic modulus is observed: for a gel with two types of cross-links G0 is 16 Pa, while 

for Cr3+ and Fe2+ cross-linkers it is only about 0.6 and 0.5 Pa, respectively. Using the theory for rubber-like 

elasticity of cross-linked random coil polymers [24] and taking into account the dangling end [24] one can 
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estimate the average molar mass between network junctions, Mc, from the plateau modulus G0 using the fol-

lowing equation [20]: 

 ( )( )0 0/ 1 /c wM KcRT G KcRT G M= + , 

where K is the empirical factor ranging from 3–10, c is the polymer concentration in g/l, R is the molar gas 

constant, T is the temperature and Mw is the molar mass of polymer. With an intermediate K value (K=5), this 

yields an average molar mass between junctions equal to 200,000 g/mol and 300,000 g/mol for the networks 

cross-linked by Cr3+ and Fe2+ ions separately. This is by several orders of magnitude higher than the molar 

mass of the repeat unit of xanthan. It indicates that only a small fraction of the ions contributes to the cross-

linking process, which is consistent with the previously reported results for ionic cross-linking of xan-

than [20]. When two types of ions are used simultaneously, the average molar mass between junctions in-

creases significantly (Mc~ 10,000 g/mol). It is probable that this synergistic behavior can be explained by the 

different nature of cross-linking by chromium and iron ions, and by the fact that when xanthan is cross-

linked by only one ion, it is near the onset of gelation (because Mc is only a few times less than the polymer 

molecular weight). At these conditions, one could expect that some polymer chains and many cross-linkers 

do not participate in the network formation. The use of two ions results in enhanced gelation, incorporation 

of more polymer chains into the network, and the appearance of more cross-linking points. This leads to an 

increase in the elastic modulus. Consequently, the simultaneous use of two cross-linkers allows for a syner-

gistic increase in the elastic modulus of gels compared to systems cross-linked with only one cross-linker. 
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Figure 3. Frequency dependences of the storage modulus (G', shaded symbols)  

and loss modulus (G'', empty symbols) for aqueous solutions containing 0.1 wt.% xanthan  

and 0.32 mM CrCl3 (circles), 13 mM FeSO4 (squares), and both crosslinkers simultaneously (diamonds).  

Temperature is 20 °C, pH 5.6 

One of the determining factors for the formation of ionic cross-links between xanthan molecules is the 

pH value. Since the optimum conditions for the formation of cross-links by Cr3+ and Fe2+ ions appear to be 

different, the effect of pH on gels cross-linked by both cross-linkers simultaneously and by each of the cross-

linkers separately was investigated. Figure 4 shows the pH dependences of the elastic modulus for such gels. 

It can be observed that the curves for gels cross-linked by two or one cross-linker exhibit a similar character-

istic appearance. At low pH (< 2.1) the G' values are rather low, and the gels are not formed. This is attribut-

ed to the protonation of the carboxyl groups of xanthan in this pH range, which impedes the interaction of 

ions with them [25]. At intermediate pH values (from 2.1 to 7.8), gel formation and a sharp increase in the 

elastic modulus for all three types of gels occur, which is due to the cross-linking of deprotonated carboxyl 

groups of xanthan by ions. The range in which the gels have the highest modulus of elasticity is narrower for 

Fe2+ ions than for Cr3+ ions. Throughout the pH range from ~2.1 to 7.8, a synergistic increase in the elastic 

modulus is observed as compared to gels with a single cross-linker. Finally, at pH values greater than 7.8, the 

elastic modulus drops and gels are not formed because both types of Cr3+ and Fe2+ ions change into water 

insoluble hydroxides unable to cross-link the carboxylate groups of xanthan. 
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Figure 4. Dependences of the storage modulus G' at high frequencies (modulus of elasticity)  

on pH for aqueous solutions containing 0.1 wt.% xanthan and 0.32 mM CrCl3 (circles),  

13 mM FeSO4 (squares), and both cross-linkers simultaneously (diamonds). Temperature is 20 °C 

Conclusions 

For the first time, we obtained xanthan hydrogels cross-linked simultaneously by two types of ions, Cr3+ 

and Fe2+. We also determined the optimum range of cross-linker concentrations and pH, in which a synergis-

tic increase in the elasticity modulus of gels by more than 30 times as compared to gels cross-linked by each 

of the ions separately was observed. 
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Catalytic Dehydration of Biomass-Derived Feedstocks  

to Obtain 5-Hydroxymethylfurfural and Furfural 

Biomass-produced furanics, furfural and 5-hydroxymethylfurfural (5-HMF), are considered as vital platform 

chemicals used in the production of active pharmaceutical ingredients (APIs), commodity goods, and fuels. 

The primary challenge associated with their production pertains to the high cost involved in scaling up to in-

dustrial levels. Consequently, it is essential to explore more cost-effective options that yield efficient end 

products. In this study, the use of Lewis and Brønsted acids such as HCl and AlCl3 enhances the isomeriza-

tion of glucose through catalytic dehydration into 5-HMF. It was observed that employing moderate reaction 

conditions increased the yield of 5-HMF to 44.94 % and 50.60 % respectively, with changes in HCl concen-

tration and AlCl3 mass loading. The suitable conditions to achieve the highest yield of 5-HMF were 100 μL 

of HCl, 0.75 g of AlCl3, reaction temperature 150 °C, and reaction time 4 h. In the second experiment, corn-

cob was converted into furfural in the presence of 20 % H2SO4, in combination with NaCl as a promoter. The 

optimal conditions under which a yield of 44.77 % was achieved were as follows: 50 mL of 20 % H2SO4, re-

action temperature 140 °C, 0.5 g of NaCl, 5 g of corncob, and reaction time 160 min. Furthermore, a pro-

posed reaction mechanism was outlined to elucidate the pathway for the production of the aforementioned 

platform chemicals. 

Keywords: Furfural, Hydroxymethylfurfural, 5-HMF, catalysts, dehydration, biomass, glucose, corncob, ex-

traction. 

 

Introduction 

The ongoing decline of fossil fuel reserves resulting from the persistent utilization of petroleum and 

coal feedstocks, coupled with the pressing climate emergency, has spurred the scientific community to pri-

oritize the exploration of bio-based alternatives [1]. In response, biorefinery concept has emerged to investi-

gate and yield economically viable products for fossil fuel compounds, thereby contributing to a reduction in 

greenhouse gas emissions [2]. In recent research, significant interest has resulted in the development of bio 

active platform chemicals. Various platform chemicals, such as succinic acid, levulinic acid, 5-hydroxy-

methylfurfural (5-HMF), and furfural could be synthesized from biomass resources as reported by [3, 4]. 

Furfural and 5-HMF holds unique position among bio-active chemicals due to their physical and chemical 

properties, comprising aldehyde, furan ring components, and alcohol. According to the U.S. Department of 

Energy (US DOE), furfural and 5-HMF are designated as two of the “top 10” platform chemicals for special-

ty and bulk chemicals [5]. These platform compounds are typically synthesized by acid-catalyzed dehydra-

tion of C6 and C5 sugars, which are obtained from the hydrolysis of cellulose and hemicellulose. For the past 

few years, researchers main focus is to study the optimization conditions for furfural and 5-HMF production 

from biomass [6–8], investigating the separation and extraction methods to increase the selectivity and yield 

[9, 10]. 

5-HMF production from biomass shows promising properties among the platform chemicals as reported 

by the US DOE and can be easily transformed into active pharmaceutical ingredients (APIs) as well as other 

valuable chemicals [11]. Biomass-produced agrobased resources such as lignocellulose, are vital resource for 

the synthesis of 5-HMF and are highly abundant in the environment. It usually follows a three-step reaction 

under acidic conditions involving hydrolysis of cellulose to glucose to form fructose through isomerization 

followed by dehydration to 5-HMF [12]. Different approaches are employed by researchers for the conver-
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sion of starch-rich agricultural waste into 5-HMF [13]. 5-HMF conversion from biomass-derived residues is 

mostly investigated via optimization of reaction parameters such as catalyst loading, temperature, pressure, 

and reaction time. Yosuke M. et al. applied liquid-liquid extraction for the synthesis of 5-HMF from mono-

saccharides using methyl isobutyl ketone (MIBK) solvent. An 85 % yield of 5-HMF was achieved by addi-

tion of Lewis acid which promotes isomerization of glucose into five membered ring structure [14]. A com-

bination of Lewis and Bronsted acid catalysts was employed by Huixiang and his team in the synthesis of 

5-HMF from carbohydrates using a low boiling point (BP) solvent [15]. From their work, about 70 % of 

5-HMF was achieved when isopropyl alcohol (IPA) solvent was used. 

Furfural, on the other hand, possesses outstanding applications in the production of active pharmaceuti-

cal ingredients, polymeric materials, food additives, cosmetics, pesticides, insecticides, disinfectants, 

etc. [16, 17]. Their synthesis involves acid-catalyzed dehydration of hemicellulose or furan-containing com-

pounds as crucial C5 sugar components. A wide range of agro-based biomass sources can be used for the 

synthesis of furfural. For instance, Adebayo and his colleagues synthesized furfural and furfuryl alcohol 

from corncob, elephant grass, sunflower, and baobab pulp in a Lewis acid medium [18]. Likewise, furfural 

synthesis was achieved from agro-based biomass resources such as rice husk, sugarcane bagasse, cotton 

seeds, and oat hulls via heterogeneous acid catalysts [19]. One major challenge faced by researchers focuses 

on improving the yield and purity of furfural by optimizing the reaction conditions such as temperature, cata-

lyst loading, solvent used, and reaction time. 

This research explores the variation of Brønsted acid (HCl) and Lewis’s acid (AlCl3) as catalysts in the 

conversion of glucose into 5-HMF under moderately optimized conditions using a high pressure batch reac-

tor. Additionally, the synthesis of another platform chemical viz furfural was studied using corncob as the 

primary feedstock in the conversion process. In the furfural synthesis, NaCl was employed as a promoter to 

augment the hydrolysis and dehydration of corncob into furfural. To elucidate the reaction pathway to pro-

duce these platform chemicals, a plausible reaction mechanism is proposed in this work. 

Experimental 

Materials 

Corncob was purchased from the local market (delivered from farmland Jetysu region of Kazakhstan); 

all other chemical reagents used in this experiment were obtained from Sigma-Aldrich: D-(+)-Glucose mon-

ohydrate, ≥ 99 %; 5-hydromehtylfurfural (5-HMF), ≥ 99 %; Furfural, 99 %; Ethylene Glycol, 99.8 %; Iso-

propyl alcohol (IPA), 99.5 %; Methanol (HPLC grade), ≥ 99.8 %, Dichloromethane (DCM), ≥ 99.9 %; Alu-

minium chloride anhydrous (AlCl3), Sodium chloride (NaCl), 99.8 %; Hydrochloric acid (HCl), ≥37 %; and 

Sulfuric acid (H2SO4). 

5-HMF Synthesis 

To a 150 mL high pressure batch reactor (Buchi-1297840), 2 g of glucose, AlCl3 (0.25–1.5 g), HCl (50–

200 µL), 45 mL of IPA, and 5 mL of deionized (DI) water were added and gently stirred to obtain a homog-

enous solution mixture. The homogeneous mixture was heated in a high pressure reactor at 10 bar at a tem-

perature of 150 °С for 4h at a stirring rate of 350 rpm. After the reaction was stopped, the mixture was quick-

ly collected and filtered under vacuum and the analyte was extracted with ethyl acetate and solvent removed 

under reduced pressure. An approximate mass of light brown solution was obtained, which was separated 

into organic and aqueous phases. Samples taken from two phases were filtered through a 0.22 µm syringe 

filter and diluted with methanol for HPLC analysis. The concentrate was preserved in clean Pyrex glass vials 

for further analysis. The 5-HMF yield was calculated as follows:  

 5-HMF yield (%) = 5-HMF

glucose

  1  00 %
N

N
 , 

where 5-HMFN  denotes the moles of 5-HMF produced and glucoseN  represents the moles of glucose used. To 

confirm the effectiveness of the chosen method, all experiments were carried out in triplicate. 

Furfural Synthesis 

5 g of corncob, 0.5 g of NaCl, and 50 mL of 20 % H2SO4 was prepared under the fume hood. The mix-

ture was transferred into a high pressure batch reactor (Buchi-129784, Germany) at 10 bar, where the reac-

tion was carried out separately at different temperatures of 100, 120, 140, 160, and 180 °C for 160 min. The 

distillate was filtered and extraction carried out by liquid-liquid approach using dichloromethane (DCM) sol-
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vent after which the furfural was separated under reduced pressure using rotavap (Buchi R-210). Furfural 

yield was calculated as follows: 

 Furfural yield (%) = Furfural

hemicellulose

  1  00 %
N

N
 , 

 

where FurfuralN  is the mole of furfural product after reaction and extraction and hemicelluloseN  is the mole of hem-

icellulose (pentose) content in corncob. 

The hemicellulose content used was based on literature values obtained by several researchers from the 

National Institute of Technology, India. According to their findings, the hemicellulose content obtained from 

lignocellulosic dry corncob is between 26–36 % [20]. The average of the reported amount (31 %) was used 

in calculating the theoretical mass of the hemicellulose content in our corncob. Furfural content was calcu-

lated based on the concentrations obtained by UHPLC where samples were measured according to the cali-

bration (with R2 0.9962) prepared for furfural analysis. All experiments were carried out in triplicates to con-

firm the effectiveness of the chosen methods. 

Scheme of the 5-HMF and furfural production from glucose and corncob respectively is presented in 

Figure 1. 

 

 

Figure 1. Process flowsheet of 5-HMF and furfural production from glucose and corncob respectively 

Characterization 

Characterization analyses were performed qualitatively and quantitatively for pure standards and syn-

thesized products. Prior characterization of the pure furfural standard, purification was carried out by a sim-

ple distillation process as the furfural changed color to dark brown due to improper preservation. Furfural 

and 5-HMF were characterized by FTIR, UHPLC, and GCMS to understand the physical and chemical fea-

tures. The functional groups were detected using FTIR spectrometer (Thermo Scientific Nicolet iS10, USA) 

to study the chemical composition of furfural and 5-HMF. All spectra were recorded in the range 4000–

500 cm-1 with a scanning speed of 1 cm-1s-1 and a 4 cm-1 resolution. 5-HMF concentration obtained from glu-

cose conversion was analyzed by UHPLC (Ultimate 3000, Thermo Fisher Scientific, USA) and equipped 

with a UV detector (C18 column, 150 mm length, particle size 1.9-micron, diameter 2.1 mm). The eluent 

used was a mixture of water: methanol (80:20, v/v) at a flow rate of 0.2 mL/min. The column temperature 

was 30 °C and the sample injection volume was 1 µL. The analysis was repeated two times and the 5-HMF 

was measured at 284 nm wavelength and quantified using an external standard calibration curve with series 

of dilutions ranging from 0.5 mg/L to 30 mg/L. The quantitative analysis of furfural used the same parame-

ters as for the analysis of 5-HMF. The only difference is the change in wavelength from 284 nm to 275 nm 

for furfural analysis. A TSQ 8000 Evo Triple Quadrupole GC-MS/MS (Thermo Fisher Scientific) instrument 

with ion source temperature of 200 °C, the operating system at 70 eV, capillary temperature of 200 °C, with 
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injection split (20:1 ratio, 1 μL) at 270 °C injector temperature was used to perform qualitative analysis of 

the synthesized products. 5 % phenyl residues: 95 % methyl polysiloxane capillary column (Trace GOLD 

TG-5MS-GC Column 30 m × 0.25 µm × 0.25 mm, Thermo) was used. The oven temperature was pro-

grammed as follows: initially at 60 °C for 5 min, increased to 260 °C at a flow rate of 15 °C/min and main-

tained at 260 °C for 20 min, and finally increased to 270 °C rate 2 °C/min, maintained at 270 °C for 5 min. 

Helium (He) was used as the carrier gas at a flow rate of 1 mL/min. The full scan of the EI ionization mode 

was carried out in the range of m/z 45–600. Data collection, compound identification, and peak processing 

were performed with Xcalibur (Thermo Scientific). 

Results and Discussion 

The purchased furfural standard was purified and characterized by FTIR, GCMS, and HPLC to study 

their physicochemical properties. FTIR was as well measured for the as-prepared sample products and com-

pared with pure standards and feedstocks. The results obtained by FTIR showed prominent peaks in which 

different functional groups were identified by comparison with literature data. In Figure 2, the chemical 

composition of glucose, corncob, synthesized 5-HMF and furfural as well as pure 5-HMF and furfural stand-

ards are presented. 

 

Figure 2. FTIR spectra of 5-HMF (A) and furfural (B) 

The IR spectra of glucose, 5-HMF, and pure 5-HMF standard in Figure 2(A) show the chemical compo-

sition consistent with molecular structures and expected functional groups, confirming the identity of these 

compounds. Though peaks were observed in the same spectral region from all samples, in overall, the pure 

5-HMF standard shows peaks with higher intensities compared with that of raw glucose and 5-HMF obtained 

from glucose. A broad absorption band at 3374.26 cm-1 was observed in all three materials at the same posi-

tion which could be attributed to the stretching vibrations of 5-HMF hydroxyl groups [21]. The absorption 

bands in the region 3120.81–2841.61 cm-1 from pure 5-HMF standard through synthesized 5-HMF were at-

tributed to the presence of methylene group (-CH2-). Further, the pure 5-HMF standard possesses a sharp 

band at 1655.84 cm-1, which was assigned to the stretching vibration of C=O (carbonyl group). However, this 

prominent was not so recognizable in the raw glucose and 5-HMF samples produced from glucose. The pres-

ence of C-O stretching vibration was justified by absorption peaks at 1017 cm-1 and 1188 cm-1 in all samples 

as already reported [22]. 

Figure 2(B) shows the IR spectra of pure furfural standard, furfural produced from corncob and raw 

corncob. In the pure furfural spectrum, moderate intensity bands at 2810 and 2840.22 cm-1 represent C-H 

stretch for the aldehyde group while at 3133.31 cm-1, the presence of aliphatic C-H stretch was recorded, at 

the same time these peaks were not observed in corncob and furfural synthesized from corncob. At a wave-

length of 1670.33 cm-1, the presence of the conjugated carbonyl group showed an intense peak confirming 

the presence of the carbonyl functional group in the furfural compound. This is also observed in the same 

region from furfural-derived corncob. This occurs in the conjugated unsaturated aldehyde region but not the 

ketone group. The spectral range between 881 to 745.69 cm-1 could be attributed to the C-H bending vibra-

tion while at 1460.98 cm-1, the –C=C functional group was recorded [23]. The spectral region between 881–

876 cm-1 and 773–770 cm-1 is indicative of the –CH out-of-plane bending vibrations associated with aromatic 

rings and their derivatives where these peaks are recorded in pure furfural and that of furfural derived from 

A B 
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corncob [24]. In summary, more intense peaks are observed in pure furfural standard and synthesized furfu-

ral compared with raw corncob spectra. 

GC-MS/MS qualitative analysis was performed to confirm glucose and corncob transformation into 

5-HMF and furfural respectively. From the result, the purity and molecular composition of 5-HMF and furfu-

ral was confirmed by qualitative analysis using a TSQ 8000 triple quadruple GC-MS/MS analytical instru-

ment. The chromatogram exhibited distinctive retention time at 3.62 min and 4.16 min for 5-HMF and furfu-

ral respectively showing the mass-to-charge ratio (m/z) and relative abundance of all fragments generated 

during the bombardment by electron impact ionization process as shown in Figure 3. 

 

 

Figure 3. GC-MS/MS qualitative test for 5-HMF (A) and furfural (B) from glucose and corncob respectively 

The spectrum of the 5-HMF derivative with m/z 126 corresponds to the molecular mass of the parent 

ion (M). A methyl group loss fragment (–CH3) at m/z 97 denotes the base peak, while oxidative products 

(e.g., HCOOH) and fragments resulting from furan ring opening forming dehydrated products are also ob-

served after bombardment (Fig. 3(A)). In addition, fragments resulting from substituents or side chains may 

also be evident. For furfural fragments, as shown in Figure 3(B), the m/z value at 96 corresponds to the mo-

lecular mass of furfural as well as the base peak since it shows the highest intensity amongst all other frag-

ments. Importantly, a fragment with m/z 67 corresponds to a furanic cation which plays a vital role in furfu-

ral synthesis. The fragments obtained from as prepared 5-HMF, and furfural are in agreement with those al-

ready reported in the literature. 

A quantitative and qualitative analysis was carried out with UHPLC ultimate 3000 (Thermo Scientific) 

with UV-vis detector at 284 and 275 nm wavelength for 5-HMF and furfural respectively (Fig. 4). Prior to 

analysis, a calibration curve was prepared using pure 5-HMF and furfural standard. The correlation coeffi-

cients 0.9999 and 0.9998 for 5-HMF and furfural respectively proved the efficiency of the curve. 

 

 
 

Figure 4. UHPLC analysis for 5-HMF (A) and furfural (B) synthesized from glucose and corncob respectively 

An intense peak in Figure 4(A) was determined at a retention time of 3.093 min for 5-HMF with the 

highest concentration of 257.87 mg/L amongst all synthesized samples. Furfural confirmation test was also 

conducted on UHPLC where a furfural peak was observed at 3.807 min as shown in Figure 4(B). 

A B 

B А 
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Effect of HCl Volume and AlCl3 Loading Towards 5-HMF Production from Glucose 

The synthesis of 5-HMF from glucose conversion exhibits potential pathways, inclusive of both direct 

dehydration and intermediated routes, possibly involving compounds like fructose as reported by [25]. Lewis 

acids, such as AlCl3, VCl3, and SnCl4 are found to be useful in the glucose isomerization to fructose com-

pared with Brønsted acids. Furthermore, fructose then undergoes dehydration in the presence of Brønsted 

acid (HCl) leading to the formation of 5-HMF. Figure 5(A) shows the effect of HCl volume for 5-HMF con-

version from glucose. The study aimed to investigate the impact of variations in HCl volume and AlCl3 cata-

lyst loading on 5-HMF yield. Different HCl volumes, ranging from 50 to 250 µL, were tested in a 50 mL 

IPA:H2O ratio to facilitate the conversion of glucose into 5-HMF. The experimental procedure involved 

heating the reaction mixture in a high pressure batch reactor to 150 °C and maintaining a steady temperature 

for a residence time of 4 h. 

 

  

Figure 5. HCl concentration (A) and AlCl3 mass loading (B) variation for 5-HMF production from glucose  

(Asterisks denotes level of significance based on one sample t-test  

assuming statistical significance at * = :P < 0.05 ** = :P<0.005 *** = :P <0.0005) 

The 5-HMF yield exhibited an increase from 17.51 % to 42.94 % when HCl volumes of 50 and 100 µL 

were respectively used (Fig. 5(A)). However, as the HCl volume was further increased to 150–250 µL, the 5-

HMF yield gradually decreased within the range of 39.46 % to 26.06 %. Based on the findings, the optimal 

conditions were determined to be a 100 µL HCl volume and 1 g of AlCl3. Between 100–200 µL HCl volume 

shows a good trend in transforming glucose to 5-HMF. However, the yield is relatively low when too low or 

too high concentration of HCl was tested as shown in Figure 5(A). This trend is similar to the work that was 

already reported by [26-27]. As widely accepted, the formation of 5-HMF requires relatively moderate con-

ditions. Increasing the acidity of the medium might facilitate the dehydration reaction but highly acidic me-

dium may not be favorable as seen in the trend of product yield. In addition, choosing a higher temperature 

for highly acidic medium might convert the 5-HMF to levulilic acid as an intermediate [28]. The results ob-

tained from statistical data prove that the difference the triplicates of each experiment conducted towards 

5-HMF synthesis was highly significant (p < 0.05). To summarize, a moderate HCl concentration is required 

for a good yield of 5-HMF while low or higher concentration may suppress the glucose conversion to 

5-HMF. 

Empirical research was conducted by varying the mass of AlCl3 to monitor the yield of 5-HMF, aiming 

to determine the optimal quantity of AlCl3 conducive to the conversion of glucose into 5-HMF, as depicted 

in Figure 5(B). To study the effect of AlCl3 mass loading, different masses varied from 0.25–1.5 g of AlCl3 

dosage were used. The maximum yield of 51.60 % was reached when 0.75 g of AlCl3 was used in the pres-

ence of 100 µL HCl for a reaction time of 4 h at 10 bar pressure. Increasing the mass of AlCl3 from 0.25 to 

0.75 g shows a good correlation by increasing the yield of 5-HMF yield while further increment of AlCl3 

mass results in low yield. Increasing trends were found in the work of [29], however, they did not include 

further increment of AlCl3 dosage in their research. One possible reason for the yield decline after increasing 

the mass of AlCl3 could be related to the agglomeration of the catalyst due the higher amount in solution or 

possibility of converting the glucose into other byproducts such as humins. 

A B 
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Effect of Temperature on Corncob Dehydration into Furfural Using H2SO4/NaCl Medium 

In the furfural synthesis from corncob via a Brønsted acid catalysed dehydration reaction method in the 

presence of NaCl, effect of temperature variation on corncob conversion into furfural was the main parame-

ter studied. To achieve furfural, Cl– ions in the presence of 20 % H2SO4 enhance the transformation of corn-

cob hemicellulose layers during dehydration process to produce furfural. H2SO4 serves as a catalyst while 

addition of NaCl as a promoter. From the results, furfural synthesis from corncob using a high pressure batch 

system significantly impacts the yield when temperature was varied (Fig. 6). 

 

 

Figure 6. Effect of temperature on corncob dehydration into furfural using H2SO4/NaCl medium 

(Asterisks denotes level of significance based on one sample t-test assuming  

statistical significance at at * = :P < 0.05 ** = :P<0.005 *** = :P <0.0005) 

As can be seen in Figure 6, NaCl dramatically promoted the conversion of corncob into furfural in the 

presence of H2SO4 catalyst at a reaction temperatures ranging from 100 °C to 180 °C at 10 bar pressure in 

160 min reaction time. The highest furfural yield of 44.77 % was obtained for 140 °C reaction temperature 

while the lowest yield (24.52 %) at 160 °C reaction temperature. From the outcome and the chemistry in-

volved in the synthesis, it could be attributed to the fact that corncob dehydration of hemicellulose (pentose) 

according to this reaction is highly favoured at moderate temperatures. The reaction likely proceeds efficient-

ly at a reaction temperature of 140 °C leading to higher furfural yield. In contrast, the choice of higher reac-

tion temperature may be too aggressive for this reaction resulting in the low yield. This could also occur due 

to undesired side reactions or the rehydration of furfural into other by-products such as humins and levulinic 

acid. The results obtained from statistical data proves that the difference the triplicates of each experiment 

conducted towards furfural synthesis was highly significant (p < 0.005). The results obtained highlight the 

importance of temperature optimisation in achieving a higher yield. 

Reaction Mechanism 

The reaction routes for glucose conversion into 5-HMF are shown in Figure 7(A). Glucose conversion 

in the presence of Brønsted and Lewis acids proceeded through a coupled route, involving the use of AlCl3 

for isomerization of glucose to fructose and the fructose dehydration in the presence of halogen to produce 5-

HMF. 5-HMF degradation may occur, leading to the formation of byproducts such as formic acid, levulic 

acid, or humins [30]. In Figure 7(B), the furfural reaction pathway is divided into two major steps: in the first 

step, hydrolysis of corncob into a pentosan derivative, xylose may occur, which is further converted into fur-

fural in the second step via a dehydration process [31]. 
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Figure 7. Possible reaction mechanism for 5-HMF and furfural production from glucose and corncob respectively 

The use of H2SO4 acts as a catalyst in both steps, resulting in the production of furfural from corncob. 

The use of NaCl helps to increase furfural yield, serves as a promoter, as well as aids in the stabilization of 

oxonium or carbocation intermediates for the H2SO4 catalyst. 

Conclusions 

This study highlights the impact of Brønsted and Lewis acids in the catalytic conversion of biomass-

derived glucose and corncob into 5-Hydroxymethylfurfural (5-HMF) and furfural, respectively. The results 

obtained clearly demonstrate that selecting optimal conditions, including concentration, reaction temperature, 

reaction time, catalyst, and solvent system, is crucial for achieving high yield when transforming various bio-

mass feedstocks into their respective products. HCl and AlCl3 have been demonstrated to exhibit effective 

conversion mechanisms when used in conjunction with IPA, H2O, and 20 % H2SO4 to produce 5-HMF and 

furfural. The addition of NaCl as a promoter significantly enhances the conversion of corncob into furfural 

when H2SO4 is employed as a catalyst. Impressive yields of 42.94 % for 5-HMF (HCl concentration varia-

tion), 51.6 % for 5-HMF (AlCl3 mass loading variation) and 44.77 % for furfural were achieved. This re-

search work also proposed a plausible mechanism for glucose and corncob conversion into the aforemen-

tioned platform chemicals. 
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