Structural, Photocatalytic, and Antibacterial Evaluation of Cu-Doped ZnMn₂O₄ Nanoparticles

Authors

  • Saida Soualmi Laboratory of Synthesis and Catalysis, University of Ibn Khaldoun Tiaret, Tiaret, Algeria https://orcid.org/0009-0009-4858-8695
  • Meriem Henni Laboratory of Synthesis and Catalysis, University of Ibn Khaldoun Tiaret, Tiaret, Algeria
  • Leila Djahnit Chemistry Department, Faculty of Exact Sciences and Informatics, University Hassiba Benbouali Chlef (UHBC), Chlef, Algeria; Renewable Energy and Materials Laboratory, University of Medea, Medea, Algeria
  • Maroua Bouzegaou Laboratory of Synthesis and Catalysis, University of Ibn Khaldoun Tiaret, Tiaret, Algeria

DOI:

https://doi.org/10.31489/2959-0663/4-25-3

Keywords:

spinel, synthesis, nanomaterials, photocatalysis, doping, antibacterial, sol-gel, copper

Abstract

In this study, the impact of doping ZnMn2O4 spinel nanoparticles with different proportions of copper (Cu) was investigated for the first time. The nanomaterials were synthesized via sol-gel method and characterized structurally, optically, and morphologically. X-ray diffraction (XRD) confirmed the formation of a pure tetragonal spinel phase, with no secondary phases detected. Successful incorporation of Cu²⁺ ions into the ZnMn2O4 lattice was confirmed by shifts in peak positions and intensities. FTIR analysis revealed distinct Zn–O and Mn–O vibrations, confirming the structural integrity of the spinel. The optical band gap, estimated via Tauc plots, decreased from 2.61 eV for undoped ZnMn2O4 to 1.58 eV for 3 % Cu-doped samples, indicating improved light absorption properties. SEM analysis showed that Cu doping induced increased porosity and particle agglomeration. Photocatalytic activity was evaluated through the degradation of Methylene Blue under visible light; notably, the sample with 1 % Cu achieved an efficiency of 87.7 %. Furthermore, the doped nanoparticles exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria, with pronounced inhibition observed against E. coli. These findings highlight the multifunctionality of Cu-doped ZnMn2O4 for environmental and biomedical applications.

References

Maksoud, T. M. A., El-Sayed, H. A., & Ahmed, H. B. (2019). Antibacterial activity of metal oxide nanoparticles: A review. Journal of Nanomaterials and Molecular Nanotechnology, 8(2), 1–12. https://doi.org/10.4172/2324-8777.1000178

Soualmi, S., Djahnit, L., Henni, M., & Douar, R. (2025). Green synthesis of ZnMn2O4 nanoparticles using tragacanth gel for antibacterial effects. Chemical Papers, 1–14. https://doi.org/10.1007/s11696-025-04065-w.

Soualmi, S., Henni, M., Djahnit, L., & Hamdani, H. (2024). Sol-gel synthesized ZnO–SrMn2O4 nanocomposite and its anti-bacterial properties. Eurasian Journal of Chemistry, 29(4), 71–81. https://doi.org/10.31489/2959-0663/4-24-12

Fort, S., Hu, H., & Lakshminarayanan, B. (2019). Deep ensembles: A loss landscape perspective. arXiv. https://doi.org/10.48550/arXiv.1912.02757.

Heiba, Z. K., Ghannam, M. M., Badawi, A., & Mohamed, M. B. (2024). Tailoring the structure, optical and shielding char-acteristics of ZnMn2O4 nanostructures through Sn-doping. ECS Journal of Solid State Science and Technology, 13(7), 077001. doi: 10.1149/2162-8777/ad5b86.

Heiba, Z. K., Ghannam, M. M., Mohamed, M. B., Sanad, M. M. S., Abdel-Kader, M. H., El-Naggar, A. M., & Lakshminara-yana, G. (2023). Impact of Bi doping on the structural, optical, and dielectric features of nano ZnMn2O4. Ceramics International, 11, 303. https://doi.org/10.1016/j.ceramint.2023.11.303.

Heiba, Z. K., Ghannam, M. M., Mohamed, M. B., Sanad, M. M., El-Naggar, A. M., & Shaltout, A. A. (2024). Influence of Al doping on the structural, optical, and electrical characteristics of ZnMn2O4. ECS Journal of Solid State Science and Technology, 13(2), 023008. https://doi.org/10.1149/2162-8777/ad28ca

Zhu, X., Quan, J., Huang, J., Ma, Z., Chen, Y., Zhu, D., & Li, D. (2018). A new approach to improve the electrochemical performance of ZnMn2O4 through a charge compensation mechanism using the substitution of Al3+ for Zn2+. RSC Advances, 8(14), 7361–7368. https://doi.org/10.1039/c8ra00310f

Rajesh, G., Kumar, P. S., Alanazi, A. K., Rangasamy, G., & Abo-Dief, H. M. (2023). Development of lattice defects and ox-ygen vacancies in Zn-doped CdAl2O4 nanoparticles for improving the photocatalytic efficiencies of brilliant green and brilliant blue dyes under visible illumination. Catalysis Communications, 183, 106762. https://doi.org/10.1016/j.catcom.2023.106762

Ma, L., Wei, Z., Zhu, X., Liang, J., & Zhang, X. (2019). Synthesis and photocatalytic properties of Co-doped Zn1–xCoxMn2O hollow nanospheres. Journal of Nanomaterials, 2019, 4257270. https://doi.org/10.1155/2019/4257270

Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., & Carrasco-Marin, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 37, 1215–1221. https://doi.org/10.1016/S0008-6223(98)00317-0

Imran, M., Riaz, S., Sanaullah, I., Khan, U., Sabri, A. N., & Naseem, S. (2019). Microwave assisted synthesis and antimi-crobial activity of Fe3O4-doped ZrO2 nanoparticles. Ceramics International, 45(8), 10106–10113. https://doi.org/10.1016/j.ceramint.2019.02.057

Roy, A., Ghosh, M., Ramos Ramón, J. A., Saha, S., Pal, U., & Das, S. (2019). Study on charge storage mechanism in work-ing electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Applied Surface Science, 463, 513–525. https://doi.org/10.1016/j.apsusc.2018.08.259

Bond, G. C. (2005). Small metal particles and supported metal catalysts. In Metal Catalysed Reactions of Hydrocarbons (pp. 35–91). Elsevier. https://doi.org/10.1007/0-387-26111-7_2

Heiba, Z. K., Mohamed, M. B., & Badawi, A. (2022). Structural and optical properties of (1−x)ZnMn2O4/xPbS. Journal of Materials Science: Materials in Electronics, 33(14), 11354–11364.

Ma, Z., Ren, F., Ming, X., Long, Y., & Volinsky, A. A. (2019). Cu-doped ZnO electronic structure and optical properties studied by first principles calculations and experiments. Materials, 12(1), 196. https://doi.org/10.3390/ma12010196

Khalid, A., Ahmad, P., Alharthi, A. I., Muhammad, S., Khandaker, M. U., Rehman, M., & Bradley, D. A. (2021). Structural, optical, and antibacterial efficacy of pure and zinc doped copper oxide against pathogenic bacteria. Nanomaterials, 11(2), 293. https://doi.org/10.3390/nano11020451

Yıldırım, M. (2019). Characterization of the framework of Cu-doped TiO2 layers: An insight into optical, electrical and photodiode parameters. Journal of Alloys and Compounds, 773, 890–904. https://doi.org/10.1016/j.jallcom.2018.09.276

Ali, B. M., Siddig, M. A., Alsabah, Y. A., Elbadawi, A. A., & Ahmed, A. I. (2018). Effect of Cu²⁺ doping on structural and optical properties of synthetic Zn0.5CuxMg0.5–xFe2O4 (x = 0.0–0.4) nano ferrites. Advances in Nanoparticles, 7(1), 1–13. https://doi.org/10.4236/anp.2018.71001

Gherbi, R., Bessekhouad, Y., & Trari, M. (2016). Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method. Journal of Physics and Chemistry of Solids, 89, 69–77. https://doi.org/10.1016/j.jpcs.2015.10.019

Lima, D. S., Gullon, B., Cardelle-Cobas, A., Brito, L. M., Rodrigues, K. A., Quelemes, P. V., ... & Batziou, K. (2017). Chi-tosan-based silver nanoparticles: A study of the antibacterial, antileishmanial and cytotoxic effects. Journal of Bioactive and Com-patible Polymers, 32(4), 397–410. https://doi.org/10.1177/0883911516681329

Bogdanović, U., Lazić, V., Vodnik, V., Budimir, M., Marković, Z., & Dimitrijević, S. (2014). Copper nanoparticles with high antimicrobial activity. Materials Letters, 128, 75–78. https://doi.org/10.1016/j.matlet.2014.04.106

Giannousi, K., Lafazanis, K., Arvanitidis, J., Pantazaki, A., & Dendrinou-Samara, C. (2014). Hydrothermal synthesis of copper-based nanoparticles: Antimicrobial screening and interaction with DNA. Journal of Inorganic Biochemistry, 133, 24–32. https://doi.org/10.1016/j.jinorgbio.2013.12.009

Cai, Y., Stromme, M., Melhus, A., Engqvist, H., & Welch, K. (2013). Photocatalytic inactivation of biofilms on bioactive dental adhesives. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102, 62–67. https://doi.org/10.1002/jbm.b.32980

Kim, J., Cho, H., Ryu, S., & Choi, M. (2000). Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion. Archives of Biochemistry and Biophysics, 382, 72–80. https://doi.org/10.1006/abbi.2000.1996

Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336. https://doi.org/10.1016/0891-5849(94)00159-h

Park, G. D., Kang, Y. C., & Cho, J. S. (2022). Morphological and electrochemical properties of ZnMn2O4 nanopowders and their aggregated microspheres prepared by simple spray drying process. Nanomaterials, 12(4), 680. https://doi.org/10.3390/nano12040680

Structural, Photocatalytic, and Antibacterial Evaluation  of Cu-Doped ZnMn2O4 Nanoparticles

Downloads

Published

2025-11-26

How to Cite

Soualmi, S., Henni, M., Djahnit, L., & Bouzegaou, M. (2025). Structural, Photocatalytic, and Antibacterial Evaluation of Cu-Doped ZnMn₂O₄ Nanoparticles. EURASIAN JOURNAL OF CHEMISTRY. https://doi.org/10.31489/2959-0663/4-25-3

Issue

Section

ONLINE FIRST