WO3 Doped SnS2 Gas Sensor Response to NO2: Effect of Temperature and Humidity Using Transition State Theory Formalism

Authors

DOI:

https://doi.org/10.31489/2959-0663/4-25-5

Keywords:

WO3 Doped SnS2, NO2 gas sensor, Density functional theory, Transition state

Abstract

Several factors frequently affect gas sensors, including sensing material, doping, temperature, detected gas properties, humidity, manufacturing method, etc. The present work studies WO3 doped SnS2 gas sensor response to NO2, considering the above factors using transition state theory formalism. The reaction rate equation in transition state theory was used to estimate the change in the number of vacancies in a 30 % WO3-doped SnS2 sensor when NO2 gas passed over its surface. Temperature dependence of Gibbs energy of adsorption and transition was evaluated at the effective temperatures. Effective temperatures were the temperatures after which NO2 gas dissociates and can no longer be detected. The effect of temperature and humidity was evaluated using logistic functions. Response, response time, and NO2 concentration were calculated and compared with the experiment. Interestingly, the lowest Gibbs energy of transition as a function of 30 % WO3 doping percentage was very close to the highest experimental response. WO3 doped SnS2 gas sensor is stable for an extended period, as proved experimentally and theoretically. Transition state theory enabled the calculation of changes in the number of vacancies and various experimentally obtained quantities that cannot be evaluated using density functional theory alone.

References

Lin, G., Zheng, T., Zhan, L., Lu, J., Huang, J., Wang, H., Zhou, Y., Zhang, X. and Cai, W. (2020). Tunable Structure and Optical Properties of Single Crystal SnS2 Flakes. Applied Physics Express, 13. https://doi.org/10.35848/1882-0786/ab7443

Zhang, L., Xu, J., Lei, X., Sun, H., Ai, T., Ma, F. and Chu, P.K. (2025). Edge-Enriched SnS2 Nanosheets on Graphene for Chemiresistive Room Temperature NH3 Sensors. Sensors and Actuators B: Chemical, 433. https://doi.org/10.1016/j.snb.2025.137565

Zhao, H., Lv, J., Ma, X., Huang, B., Han, L., Kang, X., Wang, D. and Fang, H. (2025). Highly Responsive WO3/SnS2 Sensor with Humidity Compensation: NO2 Real-Time Detection System in Soil Surface Layer. Sensors and Actuators B: Chemical, 429. https://doi.org/10.1016/j.snb.2025.137318

Lee, S.M., Kim, Y.J., Park, S.J., Cheon, W.S., Kim, J., Nam, G.B., Kim, Y. and Jang, H.W. (2025). In-Situ Growth of 2D MOFs as a Molecular Sieving Layer on SnS2 Nanoflakes for Realizing Ultraselective H2S Detection. Advanced Functional Materi-als, 35. https://doi.org/10.1002/adfm.202417019

Wang, Y., Li, J., Zhang, D., Zhou, T., Sun, M., Chen, S. and Sun, M. (2025). Hydrothermal Synthesis of Ag-Doped WO3-Based H2S Room Temperature Sensors: Unprecedented High and Fast Response. Sensors and Actuators B: Chemical, 438. https://doi.org/10.1016/j.snb.2025.137811

Liaqat, M.J., Hussain, S., Shahid, A., Amu-Darko, J.N.O., Ibrahim, T.K., Ibrahim, S.M., Manavalan, R.K., Zhang, X., Qiao, G. and Liu, G. (2025). Hydrothermally Grown WO3-SnO2 Nanocomposites for Efficient NO2 Detection at Low Concentration. Sen-sors and Actuators B: Chemical, 436. https://doi.org/10.1016/j.snb.2025.137711

An, B., Yang, Y., Yan, J., Wang, Y., Li, R., Wu, Z., Zhang, T., Han, R., Cheng, X., Wang, Q. and Xie, E. (2025). Oxygen Vacancies Engineering and Palladium Quantum Dots Sensitized WO3 Nanosheet for Highly Efficiently H2 Detection. Applied Sur-face Science, 692. https://doi.org/10.1016/j.apsusc.2025.162722

Airgas. (2018). Safety Data Sheet Nitrogen Dioxide (NO2). Pennsylvania. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.airgas.com/msds/001041.pdf

Chen, X., Chen, X., Han, Y., Su, C., Zeng, M., Hu, N., Su, Y., Zhou, Z., Wei, H. and Yang, Z. (2019). Two-Dimensional MoSe2 Nanosheets via Liquid-Phase Exfoliation for High-Performance Room Temperature NO2 Gas Sensors. Nanotechnology, 30. https://doi.org/10.1088/1361-6528/ab35ec

Sobrinho, H.H. de O., Eising, R. and Wrasse, E.O. (2025). Nanomaterials as Medicinal Gas Sensors Described by Density Functional Theory: A Comprehensive Review. Medical Gas Research, 15, 435–441. https://doi.org/10.4103/mgr.MEDGASRES-D-24-00121

Abdulsattar, M.A. and Mahmood, T.H. (2023). Enhancement of SnO2 Sensitivity to Acetone by Au Loading: An Applica-tion of Evans–Polanyi Principle in Gas Sensing. Optik, 275, 170604. https://doi.org/10.1016/j.ijleo.2023.170604

Abdulsattar, M.A. (2024). Effect of Acetylene Properties on Its Gas Sensing by NiO Doped ZnO Clusters: A Transition State Theory Model. Eurasian Journal of Chemistry, 29, 35–43. https://doi.org/10.31489/2959-0663/4-24-8

Abdulsattar, M. A., & Almaroof, S. M. (2025). H2S Properties and Temperature Effects on the Response of Pristine and Al-Doped ZnO Gas Sensor. Eurasian Journal of Chemistry, 30(1(117)), 40–49. https://doi.org/10.31489/2959-0663/1-25-10

Sun, S., Li, X., Wang, N., Huang, B. and Li, X. (2025). A Sensitive Ppb-Level NO2 Sensor Based on SnO2 Decorated Te Nanotubes. Sensors and Actuators B: Chemical, 428. https://doi.org/10.1016/j.snb.2025.137238

Kim, T., Kim, W., Kim, S. and Lee, W. (2025). Sensitive and Stable NO2 Sensor in a Wide Range Based on RGO/ZnO via Simple Spray Coating. Microchemical Journal, 212. https://doi.org/10.1016/j.microc.2025.113250

Rani, S., Dahiya, R., Kumar, V., Berwal, P. and Sihag, S. (2024). Hydrothermally Engineered WO3 Nanosheets as Potential NO2 Gas Sensor. Ionics, 31, 993–1002. https://doi.org/10.1007/s11581-024-05934-2

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Men-nucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A.J., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dap-prich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J. V., Cioslowski, J. and Fox, D.J. (2013). Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT.

Cai, J., Hao, S., Zhang, Y., Wu, X., Li, Z. and Zhao, H. (2024). Co3O4 as an Efficient Passive NOx Adsorber for Emission Control during Cold-Start of Diesel Engines. Chinese Journal of Chemical Engineering, 66, 1–7. https://doi.org/10.1016/j.cjche.2023.10.013

Abdulsattar, M.A. (2024). NO2 Properties That Affect Its Reaction with Pristine and Pt-Doped SnS2: A Gas Sensor Study. Journal of Molecular Modeling, 30. https://doi.org/10.1007/s00894-024-06223-5

Ambi, R.R., Mali, R.A., Pawar, A.B., Mulla, M.M. and Pittala, R.K. (2025). NiO Nanosheet-Assembled Chemiresistive Sen-sor for NO2 Detection. Applied Physics A: Materials Science and Processing, 131. https://doi.org/10.1007/s00339-025-08320-5

Nikam, S.M., Patil, T.S., Nimbalkar, N.A., Kothavale, V.P., Kamble, R.S., Gaikwad, G.A., Mane, S.M., Lee, J. and Mane, R.D. (2025). Nickel Ion-Doped Vertical Nanorod Array Network of ZnO Engineered by Chemical Bath Deposition for Versatile NO2 Gas Sensor. Journal of the Korean Ceramic Society, 62, 330–349. https://doi.org/10.1007/s43207-024-00469-8

Hu, Y., Chen, T., Wang, X., Ma, L., Chen, R., Zhu, H., Yuan, X., Yan, C., Zhu, G., Lv, H., Liang, J., Jin, Z. and Liu, J. (2017). Controlled Growth and Photoconductive Properties of Hexagonal SnS2 Nanoflakes with Mesa-Shaped Atomic Steps. Nano Research, 10, 1434–1447. https://doi.org/10.1007/s12274-017-1525-3

Wang, M., Chen, J., Zhang, C., Ding, H., Wu, H.H., Li, X., Huai, S., Tang, Z., Zhao, X., Liu, H. and Wang, X. (2025). Engi-neering Surface Defect Active Sites in SnS2 Nanosheets with Electron-Donating Groups for Efficient Photoelectrochemical Water Splitting. Journal of Catalysis, 446. https://doi.org/10.1016/j.jcat.2025.116087

Abdulsattar, M.A., Jabbar, R.H. and Al-Seady, M.A. (2024). Ethanol Properties Effects on Its Reaction with Mo-Doped SnO2 Clusters: A Gas Sensor Model. Results in Surfaces and Interfaces, 17. https://doi.org/10.1016/j.rsurfi.2024.100291

Abdulsattar, M.A., Jabbar, R.H., Abed, H.H. and Abduljalil, H.M. (2021). The Sensitivity of Pristine and Pt Doped ZnO Nanoclusters to NH3 Gas: A Transition State Theory Study. Optik, 242. https://doi.org/10.1016/j.ijleo.2021.167158

Khan, W. and Reshak, A.H. (2015). Electronic Properties of Orthorhombic BaSn2S5 Single Crystal. Indian Journal of Phys-ics, 89, 437–443. https://doi.org/10.1007/s12648-014-0605-4

Zhang, B.F., Lin, J.Z., Wang, Y.X., Zhao, Y. and Zhang, Y.F. (2023). Theoretical Studies on the G-Factors and the Local Structure of W5+ Ions in Tungsten Phosphate Glasses. Revista Mexicana de Fisica, 69. https://doi.org/10.31349/ RevMex-Fis.69.040402

Sawini, Singh, K., Kumar, A., Kumar, D., Kumar, A., Kumar, A., Mahatha, S.K. and Praveenkumar, S. (2025). Unveiling the Role of Temperature on Structural, Compositional, Morphological, Thermal and Optical Properties of Hydrothermally Synthe-sized SnS2 Nanostructures. Inorganic Chemistry Communications, 171. https://doi.org/10.1016/j.inoche.2024.113548

Abdulsattar, M.A., Almaroof, H.M. and Al-Saraf, W.J. (2025). Cl2 Gas Properties, Temperature, and Humidity Effects on SnO2 Sensor Response: Transition State Theory Study. Journal of Molecular Modeling, 31. https://doi.org/10.1007/s00894-025-06368-x

Abdulsattar, M.A. (2025). Pristine and Ni-Doped In2O3 Pyramids Response to NO2 Gas: A Transition State Theory Study. Interactions, 246. https://doi.org/10.1007/s10751-025-02282-z

Summarizing the NO2 dissociation in air and reactions with the sensor material

Downloads

Published

2025-11-15

How to Cite

Abdulsattar, M. A. (2025). WO3 Doped SnS2 Gas Sensor Response to NO2: Effect of Temperature and Humidity Using Transition State Theory Formalism. EURASIAN JOURNAL OF CHEMISTRY. https://doi.org/10.31489/2959-0663/4-25-5

Issue

Section

ONLINE FIRST