Online First

Bioactive Chitosan/β-Tricalcium Phosphate Coatings on Titanium: Experimental Optimization and DFT Insight

Authors

  • Rakiya Yu. Milusheva Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
  • Ilnar N. Nurgaliev Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-6983-4375
  • Akmal B. Abilkasimov Kimyo International University in Tashkent, Tashkent, Uzbekistan https://orcid.org/0009-0001-9255-3774
  • Sayora Sh. Rashidova Institute of Polymer Chemistry and Physics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

DOI:

https://doi.org/10.31489/2959-0663/4-25-12

Keywords:

chitosan, Bombyx mori, DFT modeling, chitosan coating, β-tricalcium phosphate, TiO2(110), electrochemical deposition, osteogenesis, implant

Abstract

The development of bioactive coatings combining biopolymers and calcium phosphate ceramics offers an effective strategy to improve osseointegration and functional performance of titanium-based implants. In this study, highly purified Bombyx mori chitosan (CS-BM) and β-tricalcium phosphate (β-TCP) were used to fabricate hybrid coatings on titanium substrates via electrochemical deposition under optimized conditions (52 °C, pH 6.6–7.0, 2.0–4.0 mA·cm–2). SEM and AFM analyses revealed uniform, strongly adherent two-layer structures with microtopography (1–10 μm roughness) favorable for bone ingrowth, while elemental analysis confirmed complete Ca- and P-rich coverage. Density functional theory (DFT) modeling confirmed the cooperative role of Ca2+ and PO43– in bridging CS-BM to TiO2, contributing to coating stability. In vivo studies demonstrated that CS-BM/TCP-coated implants accelerated early contact osteogenesis, dense trabecular bone formation, and stable bone–implant integration compared to uncoated controls. In an experimental osteoporosis model, intramuscular administration of CS-BM with active calcium or calcium–vitamin D3 significantly enhanced fibroblast-to-osteoblast differentiation, stimulated osteoid synthesis, and led to complete restoration of bone microarchitecture within 21 days. These findings highlight CS-BM/TCP coatings as a sustainable, locally sourced, and highly effective platform for orthopedic and dental implant applications, with additional therapeutic potential in osteoporosis management.

References

Raj, H.K.G., Sadasivam, G., & Dommeti, V.K. (2025). Biocomposites-coated biodegradable materials with optimized properties for orthopedic implant biodegradability and performance: A comparative study. ACS Applied Bio Materials, 8(6), 5276–5290. https://doi.org/10.1021/acsabm.5c00603

Ma, R., Wu, Z., Guo, X., Wu, Z., Zhu, Z., Qu, Y., Wang, K., Li, C., Ma, K., & Yang, P. (2025). A dual-functional biodegradable composite coating fabricated on sulfonated PEEK via vacuum cold spraying: Immunomodulation-driven osteointegration. Journal of Materials Chemistry B, 13, 7155–7171. https://doi.org/10.1039/D5TB00628G

Du, W., Guo, X., Zheng, Q., Zhang, Y., Li, H., & Wang, S. (2025). Development of a biodegradable α-TCP/PLA/nMgO composite for enhanced guided bone regeneration. Scientific Reports, 15, 19675. https://doi.org/10.1038/s41598-025-03426-5

Xie, Y., Tan, J., Fang, S., Li, T., Chen, Y., Li, L., & Chen, N. (2024). A biodegradable, osteo-regenerative and biomechanically robust polylactide bone screw for clinical orthopedic surgery. International Journal of Biological Macromolecules, 283, 137477. https://doi.org/10.1016/j.ijbiomac.2024.137477

Jiménez-Morales, A., Solís-Garrido, Á., Toirac, B., Martínez, P., Alonso, M., & Rodríguez, J. (2025). Bilayer sol-gel system for local prevention in prosthetic joint infections and osteointegration improvement. Communications Materials, 6, 67. https://doi.org/10.1038/s43246-025-00790-7

Liu, W.C., Chang, H.W., Huang, S.I., Lin, C.H., & Wu, Y.C. (2025). Biodegradable porous iron versus titanium interference screws in porcine ACL reconstruction model: A one-year observational study. Materials Degradation, 9, 77. https://doi.org/10.1038/s41529-025-00602-w

Zhang, X., Jiang, W., Wu, X., Zhao, Y., Qiu, Y., & Wang, L. (2025). Divide-and-conquer strategy with engineered ossification center organoids for rapid bone healing through developmental cell recruitment. Nature Communications, 16, 6200. https://doi.org/10.1038/s41467-025-61619-y

Kamal, A.F., Dionysios, E., Supriadi, S., Rahmat, A., Widodo, A., & Arifin, M. (2025). Biodegradability and biocompatibility test of magnesium carbonate apatite composite implants fabricated by extrusion technique on Sprague Dawley rats. Scientific Reports, 15, 9976. https://doi.org/10.1038/s41598-025-88983-5

Zhu, S., Sun, H., Mu, T., & Richel, A. (2025). Research progress in 3D printed biobased and biodegradable polyester/ceramic composite materials: Applications and challenges in bone tissue engineering. ACS Applied Materials & Interfaces, 17(2), 2791–2813. https://doi.org/10.1021/acsami.4c15719

Xia, J., Yu, J., Shi, W., Zhou, Y., Zhang, B., & Wang, Y. (2025). Molybdenum facilitates PDLSC-based bone regeneration through the JAK/STAT3 signaling pathway. Scientific Reports, 15, 22204. https://doi.org/10.1038/s41598-025-07298-7

El-Saadony, M.T., Saad, A.M., Alkafaas, S.S., Dladla, M., Ghosh, S., Elkafas, S.S., Hafez, W., Ezzat, S.M., Khedr, S.A., Hussien, A.M., Fahmy, M.A., Elesawi, I.E., Salem, H.M., Mohammed, D.M., Abd El-Mageed, T.A., Ahmed, A.E., Mosa, W.F.A., El-Tarabily, M.K., AbuQamar, S.F., & El-Tarabily, K.A. (2025). Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications — A comprehensive review. International Journal of Biological Macromolecules, 313, 142832. https://doi.org/10.1016/j.ijbiomac.2025.142832

Soontorntepwarakul, N., Boonyarattanakalin, K., Fukasem, P., Somkhuan, S., Srirussamee, K., Choowongkomon, K., & Gleeson, M.P. (2025). Assessment of the utility of chitosan nanoparticles and microfibers in drug delivery applications of sulfamethoxazole and ciprofloxacin. New Journal of Chemistry, 49, 10047–10055. https://doi.org/10.1039/D4NJ05421K

Koirala, P., Bhattarai, P., Sriprablom, J., Zhang, R., Nirmal, S., & Nirmal, N. (2025). Recent progress of functional nano-chitosan in pharmaceutical and biomedical applications: An updated review. International Journal of Biological Macromolecules, 285, 138324. https://doi.org/10.1016/j.ijbiomac.2024.138324

Pérez-Pacheco, Y., Tylkowski, B., & García-Valls, R. (2025). Chitosan micro/nanocapsules in action: Linking design, production, and therapeutic application. Molecules, 30, 252. https://doi.org/10.3390/molecules30020252

Milusheva, R., & Rashidova, S. (2019). Bombyx mori chitosan nanoparticles: Synthesis and properties. Open Journal of Organic Polymer Materials, 9, 63–73. https://doi.org/10.4236/ojopm.2019.94004

Milusheva, R.Yu., & Rashidova, S.Sh. (2022). Obtaining chitosan nanoparticles from Bombyx mori. Russian Chemical Bulletin, 71, 232–239. https://doi.org/10.1007/s11172-022-3402-9

Pirniyazov, K., Nurgaliev, I., & Rashidova, S. (2023). Reaction of the formation of chitosan nanoascorbate Bombyx mori and computer simulation of its structure. AIP Conference Proceedings, 2931, 060002. https://doi.org/10.1063/5.0182628

Sagala, Y.G., Andadari, L., Handayani, T.H., Sholikin, M.M., Fitri, A., Fidriyanto, R., Rohmatussolihat, R., Ridwan, R., Astuti, W.D., Widyastuti, Y., Fassah, D.M., Wijayanti, I., & Sarwono, K.A. (2024). The effect of silkworms (Bombyx mori) chitosan on rumen fermentation, methanogenesis, and microbial population in vitro. Veterinary World, 17(6), 1216–1226. https://doi.org/10.14202/vetworld.2024.1216-1226

Avazova, O.B., Milusheva, R.Y., Nurgaliev, I.N., & Rashidova, S.Sh. (2022). Polymolecular complexes of chitosan with the Bombyx mori protein. Bulletin of the University of Karaganda — Chemistry, 107(3), 87–101. https://doi.org/10.31489/2022Ch3/3-22-22

Vokhidova, N.R., Ergashev, K.H., & Rashidova, S.S. (2020). Hydroxyapatite–chitosan Bombyx mori: Synthesis and physicochemical properties. Journal of Inorganic and Organometallic Polymers and Materials, 30, 3357–3368. https://doi.org/10.1007/s10904-020-01649-9

Vokhidova, N.R., Khudoyberdiyev, Sh.Sh., Nurgaliev, I.N., & Rashidova, S.Sh. (2023). On obtaining binary polyelectrolyte complexes of chitosan Bombyx mori with collagen. Progress on Chemistry and Application of Chitin and its Derivatives, 28, 188–203. https://doi.org/10.15259/PCACD.28.017

Wang, J., van Apeldoorn, A., & de Groot, K. (2006). Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: Growth kinetics and influence of current density, acetic acid, and chitosan. Journal of Biomedical Materials Research Part A, 76(3), 503–511. https://doi.org/10.1002/jbm.a.30542

Zhu, J., Chen, X., Wang, J., Liu, D., Li, W., & Tian, Y. (2016). Hydroxyapatite/β-tricalcium phosphate composite for guiding bone tissue growth into a titanium tube in 8 mm dog tibia cavity defects. Journal of Wuhan University of Technology, Materials Science Edition, 31, 468–473. https://doi.org/10.1007/s11595-016-1393-9

Zhang, T., Zhang, X., Mao, M., Li, J., Wei, T., & Sun, H. (2020). Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: In vitro and in vivo studies. Journal of Periodontal & Implant Science, 50(6), 392–405. https://doi.org/10.5051/jpis.1905680284

Mishchenko, O., Yanovska, A., Kosinov, O., Maksymov, D., Moskalenko, R., Ramanavicius, A., & Pogorielov, M. (2023). Synthetic calcium–phosphate materials for bone grafting. Polymers, 15, 3822. https://doi.org/10.3390/polym15183822

Mondal, S., Park, S., Choi, J., Vu, T.T.H., Doan, V.H.M., Vo, T.T., Lee, B., & Oh, J. (2023). Hydroxyapatite: A journey from biomaterials to advanced functional materials. Advances in Colloid and Interface Science, 321, 103013. https://doi.org/10.1016/j.cis.2023.103013

Hou, X., Zhang, L., Zhou, Z., Luo, X., Wang, T., Zhao, X., Lu, B., Chen, F., & Zheng, L. (2022). Calcium phosphate-based biomaterials for bone repair. Journal of Functional Biomaterials, 13, 187. https://doi.org/10.3390/jfb13040187

Haque, T. (2025). Assessment of bone regeneration around implants using different bone substitute materials. Journal of Pharmacy and Bioallied Sciences, 17(Suppl 2), S1258–S1260. https://doi.org/10.4103/jpbs.jpbs_79_25

Yun, J.I., Yun, S.I., Kim, J.H., Kim, D.G., & Lee, D.-W. (2025). Mediation of osseointegration, osteoimmunology, and osteoimmunologic integration by Tregs and macrophages: A narrative review. International Journal of Molecular Sciences, 26, 5421. https://doi.org/10.3390/ijms26115421

Sarvaiya, B.B., Kumar, S., Pathan, M.H., Patel, P., Shah, H., & Mehta, R. (2025). The impact of implant surface modifications on the osseointegration process: An overview. Cureus, 17, e81576. https://doi.org/10.7759/cureus.81576

Xu, F., Zhao, G., Gong, Y., Liang, X., Yu, M., Cui, H., Xie, L., Zhu, N., Zhu, X., Shao, X., Qi, K., Lu, B., Tu, J., & Na, S. (2025). Enhancement of osseointegration via endogenous electric field by regulating the charge microenvironments around implants. Advanced Healthcare Materials, 14, e2403388. https://doi.org/10.1002/adhm.202403388

Wang, Q., Chen, Y., Ding, H., Li, X., Zhang, S., Zhao, Y., & Guo, J. (2025). Optogenetic activation of mechanical nociceptions to enhance implant osseointegration. Nature Communications, 16, 3093. https://doi.org/10.1038/s41467-025-58336-x

Tao, H., Chen, K., Wang, Q., Yang, J., Liu, L., Zhang, C., & Zhang, J. (2025). Targeting lipid raft-related stomatin to ameliorate osteoporosis in preclinical models. Nature Communications, 16, 5495. https://doi.org/10.1038/s41467-025-60032-9

Wang, B., Liu, Y., Wang, Z., Zhang, Y., Gao, J., Li, F., & Li, X. (2025). Osteoporosis in adjacent cervical segments exacerbates disc herniation. Scientific Reports, 15, 22901. https://doi.org/10.1038/s41598-025-06554-0

Jiang, S., Xu, K., & Chen, X. (2025). Identifying modifiable factors and their causal effects on osteoporosis risk. Scientific Reports, 15, 19472. https://doi.org/10.1038/s41598-025-04455-w

Morin, S.N., Leslie, W.D., & Schousboe, J.T. (2025). Osteoporosis: A review. JAMA, June 30, ahead of print. https://doi.org/10.1001/jama.2025.6003

Park, K.H., Kim, S.J., Jeong, Y.H., Moon, H.J., Song, H.J., & Park, Y.J. (2018). Fabrication and biological properties of calcium phosphate/chitosan composite coating on titanium in modified SBF. Materials Science and Engineering: C, 90, 113–118. https://doi.org/10.1016/j.msec.2018.04.060

Thi Ngo, A., Do Chi, L., Pham, H.H., Pham, S., & Duong, L. (2024). Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer. Journal of Applied Biomaterials & Functional Materials, 22, 22808000241271693. https://doi.org/10.1177/22808000241271693

Kresse, G., & Hafner, J. (1993). Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558–561. https://doi.org/10.1103/PhysRevB.47.558

Kresse, G., & Hafner, J. (1994). Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–amorphous-Semiconductor Transition in Germanium. Physical Review B, 49, 14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

Kresse, G., & Furthmüller, J. (1996). Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

Kresse, G., & Furthmüller, J. (1996). Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15–50. https://doi.org/10.1016/0927-0256(96)00008-0

Perdew, J.P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

Blöchl P.E. (1994). Projector Augmented-Wave Method. Physical Review B, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

Monkhorst, H.J., & Pack, J.D. (1976). Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

Leslie, M., & Gillan, N. J. (1985). The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. Journal of Physics C: Solid State Physics, 18, 973. https://doi.org/10.1088/0022-3719/18/5/005

Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21, 084204. https://doi.org/10.1088/0953-8984/21/8/084204

Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276. https://doi.org/10.1107/S0021889811038970

Srivastava, A.P., & Pandey, B.K. (2025). Analysis of the structural and electronic properties of TiO2 under pressure using density functional theory and equation of state. Computational Condensed Matter, 44, e01076. https://doi.org/10.1016/j.cocom.2025.e01076

Bastami, G. F., Paknejad, Z., Jafari, M., Salehi, M., Rezai Rad, M., & Khojasteh, A. (2017). Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Materials Science and Engineering: C, 72, 481–491. https://doi.org/10.1016/j.msec.2016.10.084

Elimelech, R., Khoury, N., Tamari, T., Blumenfeld, I., Gutmacher, Z., & Zigdon-Giladi, H. (2019). Use of transforming growth factor-β loaded onto β-tricalcium phosphate scaffold in a bone regeneration rat calvaria model. Clinical Implant Dentistry and Related Research, 21, 593–601. https://doi.org/10.1111/cid.12775

Cao, Q., He, Z., Sun, W.Q., Fan, G., Zhao, J., Bao, N., & Ye, T. (2019). Improvement of calcium phosphate scaffold osteogenesis in vitro via combination of glutamate-modified BMP-2 peptides. Materials Science and Engineering: C, 96, 412–418. https://doi.org/10.1016/j.msec.2018.11.048

Garcia, D.C., Mingrone, L.E., Cavalcanti de Sá, M.J. (2022). Evaluation of osseointegration and bone healing using pure-phase β-tricalcium phosphate ceramic implant in bone critical defects: A systematic review. Frontiers in Veterinary Science, 9, 859920. https://doi.org/10.3389/fvets.2022.859920

Pihlman, H., Keränen, P., Paakinaho, K., Haimi, S., Törmälä, P., & Waris, T. (2018). Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-ε-caprolactone) scaffold for bone regeneration: A study in a rabbit calvarial defect. Journal of Materials Science: Materials in Medicine, 29, 156. https://doi.org/10.1007/s10856-018-6159-9

Xie, L., Yang, Y., Fu, Z., Li, Y., Shi, J., Ma, D., Liu, S., & Luo, D. (2019). Fe/Zn-modified tricalcium phosphate (TCP) biomaterials: Preparation and biological properties. RSC Advances, 9, 781–789. https://doi.org/10.1039/C8RA08453J

Kim, S.-M., Yoo, K.-H., Kim, H., Kim, Y.-I., & Yoon, S.-Y. (2022). Simultaneous substitution of Fe and Sr in beta-tricalcium phosphate: Synthesis, structural, magnetic, degradation, and cell adhesion properties. Materials, 15, 4702. https://doi.org/10.3390/ma15134702

Kumar, P.S., KS, S.K., Grandhi, V.V., & Gupta, V. (2019). The effects of titanium implant surface topography on osseointegration: Literature review. JMIR Biomedical Engineering, 4(1), e13237. https://doi.org/10.2196/13237

Jahani, B., & Wang, X. (2021). The effects of surface roughness on the functionality of Ti13Nb13Zr orthopedic implants. Biomedical Journal of Scientific & Technical Research, 38(1), 30058–30067. https://doi.org/10.26717/BJSTR.2021.38.006104

Romero-Serrano, M., Romero-Ruiz, M.-M., Herrero-Climent, M., Rios-Carrasco, B., & Gil-Mur, J. (2024). Correlation between implant surface roughness and implant stability: A systematic review. Dentistry Journal, 12, 276. https://doi.org/10.3390/dj12090276

Xing, Y., Xu, Q., Yang, S.X., Chen, C., Tang, Y., Sun, S., Zhang, L., Che, Z., & Li, X. (2016). Preservation mechanism of chitosan-based coating with cinnamon oil for fruits storage based on sensor data. Sensors, 16(7), 1111. https://doi.org/10.3390/s16071111

Singh, T.P., Chatli, M.K., & Sahoo, J. (2015). Development of chitosan-based edible films: Process optimization using response surface methodology. Journal of Food Science and Technology, 52(5), 2530–2543. https://doi.org/10.1007/s13197-014-1318-6

Jinno, T., Davy, D.T., & Goldberg, V.M. (2002). Comparison of hydroxyapatite and hydroxyapatite tricalcium-phosphate coatings. Journal of Arthroplasty, 17(7), 902–909. https://doi.org/10.1054/arth.2002.34821

Gutiérrez-Sánchez, M., Flores-Rocha, S., Pozos-Guillén, A., Flores, H., Escobar-Barrios, V., Palestino-Escobedo, A.G., & Escobar-García, D.M. (2025). Design, characterization, and biocompatibility of chitosan–nano-hydroxyapatite/tricalcium phosphate sponges. Tissue and Cell, 94, 102804. https://doi.org/10.1016/j.tice.2025.102804

Zhou, J., Ma, R., Shi, W., Lei, S., Zhang, X., Jiang, N., Lin, Y., Li, Z., & Nie, M. (2024). Zinc and chitosan-enhanced β tricalcium phosphate from calcined fetal bovine bone for mandible reconstruction. Frontiers in Bioengineering and Biotechnology, 12, 1355493. https://doi.org/10.3389/fbioe.2024.1355493

Karimipour, A., Shahgholi, M., Attaeyan, A., Viet, P.H.H., Asiri, S.A., Alfawaz, K.M., & Alogla, A.F. (2024). The effect of initial temperature on the mechanical strength of tricalcium phosphate/chitosan/silica aerogels nanocomposites using molecular dynamics simulation. Journal of the Taiwan Institute of Chemical Engineers, 164, 105682. https://doi.org/10.1016/j.jtice.2024.105682

Senthil, R. (2024). Preparation of bioscaffold supported by chitosan and nanocurcumin to promote tissue engineering. Regenerative Engineering and Translational Medicine, 10, 553–563. https://doi.org/10.1007/s40883-024-00344-2

Fischer, V., Haffner-Luntzer, M., Prystaz, K., Vom Scheidt, A., Busse, B., Schinke, T., Amling, M., & Ignatius, A. (2017). Calcium and vitamin D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. Scientific Reports, 7, 7223. https://doi.org/10.1038/s41598-017-07511-2

Saul, D., & Khosla, S. (2022). Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocrine Reviews, 43, 984–1002. https://doi.org/10.1210/endrev/bnac008

Bioactive Chitosan/β-Tricalcium Phosphate Coatings on Titanium: Experimental Optimization and DFT Insight

Downloads

Additional Files

Published

2025-12-09

How to Cite

Milusheva, R. Y., Nurgaliev, I. N., Abilkasimov , A. B., & Rashidova , S. S. (2025). Bioactive Chitosan/β-Tricalcium Phosphate Coatings on Titanium: Experimental Optimization and DFT Insight. EURASIAN JOURNAL OF CHEMISTRY. https://doi.org/10.31489/2959-0663/4-25-12

Issue

Section

ONLINE FIRST