A Bacterial Enzymatic System Neutralizes the Impact of Silica-Magnetite Nanocomposites on ROS Levels
DOI:
https://doi.org/10.31489/2959-0663/4-25-16Keywords:
iron-based nanocomposite, magnetite, silica, ascorbic acid, humic acids, bacterial enzymatic assay, reactive oxygen species, bioluminescence, chemiluminescenceAbstract
This study investigates the reactive oxygen species (ROS) generation and biological activity of novel silica-magnetite nanocomposites, TA-AA-Fe3O4 and TA-HA-Fe3O4, where TA is a silicon dioxide copolymer, AA is ascorbic acid, and HA is humic acids. A key challenge in nanotoxicology is the contradictory data from complex biological systems. To address this, we employed a standardized bioluminescent enzymatic assay (bacterial luciferase/oxidoreductase) as a simple, rapid biosensor system to evaluate the nanocomposites' effects under controlled conditions. We compared ROS activity in both non-biological (enzyme-free aqueous solutions) and biological (enzymatic system) environments, with and without model oxidative stress induced by 1,4-benzoquinone. The enzymatic system exerted a pronounced neutralizing effect on ROS content, suppressing the significant ROS fluctuations and synergistic ROS generation (up to 300%) observed in non-biological media in the presence of the oxidizer. Additionally, the nanocomposites showed no effect on the bioluminescence intensity of the enzymatic system. This disparity between the higher reactivity in simple aqueous solutions and the neutral effect in the enzymatic system highlights the critical role of biological matrixes. The findings suggest that enzymatic environments can mitigate the radical processes driven by iron-based nanocomposites, which is crucial for predicting their biological activity and potential for applications like ferroptosis-based tumor therapy.
References
Castro, E., Garcia, A.H., Gerardo, Z., & Echegoyen, L. (2017). Fullerenes in biology and medicine. Journal of Materials Chemistry B, 5(32), 6523–6535. https://doi.org/10.1039/C7TB00855D DOI: https://doi.org/10.1039/C7TB00855D
Ghazanfari, M.R., Kashefi, M., Shams, S.F., & Jaafari, M.R. (2016). Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochemistry Research International, 2016, 7840161. https://doi.org/10.1155/2016/7840161 DOI: https://doi.org/10.1155/2016/7840161
Kahru, A., & Mortimer, M. (2021). Advances in nanotoxicology: Towards enhanced environmental and physiological rele-vance and molecular mechanisms. Nanomaterials, 11(4), 919. https://doi.org/10.3390/nano11040919 DOI: https://doi.org/10.3390/nano11040919
Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., & Berensmeier, S. (2015). High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Tech-nology, 150, 29–36. https://doi.org/10.1016/j.seppur.2015.06.024 DOI: https://doi.org/10.1016/j.seppur.2015.06.024
Bauer, L.M., Situ, S.F., Griswold, M.A., & Samia, A.C. (2016). High-performance iron oxide nanoparticles for magnetic particle imaging — guided hyperthermia (hMPI). Nanoscale, 8(24), 12162–12169. https://doi.org/10.1039/c6nr01877g DOI: https://doi.org/10.1039/C6NR01877G
An, Q., Sun, C., Li, D., Xu, K., Guo, J., & Wang, C. (2013). Peroxidase-like activity of Fe3O4@carbon nanoparticles en-hances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Applied Materials & Inter-faces, 5(24), 13248–13257. https://doi.org/10.1021/am4042367 DOI: https://doi.org/10.1021/am4042367
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., Morrison, B. 3rd., & Stockwell, B.R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042 DOI: https://doi.org/10.1016/j.cell.2012.03.042
He, Y.-J., Liu, X.-Y., Xing, L., Wan, X., Chang, X., & Jiang, H.-L. (2020). Fenton reaction-independent ferroptosis therapy via Glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 241, 119911. https://doi.org/10.1016/j.biomaterials.2020.119911 DOI: https://doi.org/10.1016/j.biomaterials.2020.119911
Feng, L., Xie, R., Wang, C., Gai, S., He, F., Yang, D., Yang, P., & Lin, J. (2018). Magnetic targeting, tumor microenviron-ment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano, 12(11), 11000–11012. https://doi.org/10.1021/acsnano.8b05042 DOI: https://doi.org/10.1021/acsnano.8b05042
Rossi, L.M., Costa, N.J.S., Silva, F.P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 16(6), 2906. https://doi.org/10.1039/C4GC00164H DOI: https://doi.org/10.1039/c4gc00164h
Wu, Y., Zhu, W.-H., Zakeeruddin, S.M., & Grätzel, M. (2015). Insight into D-A-π-A structured sensitizers: A promising route to highly efficient and stable dye-sensitized solar cells. ACS Applied Materials & Interfaces, 7(18), 9307–9318. https://doi.org/10.1021/acsami.5b02475 DOI: https://doi.org/10.1021/acsami.5b02475
Carlos, L., Cipollone, M., Soria, D.B., Moreno, M.S., Ogilby, P.R., García Einschlag, F.S., & Mártire D.O. (2012). The ef-fect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purifica-tion Technology, 91, 23–29. https://doi.org/10.1016/j.seppur.2011.08.028 DOI: https://doi.org/10.1016/j.seppur.2011.08.028
Nuzhina, J.V., Shtil, A.A., Prilepskii, A.Y., & Vinogradov, V.V. (2019). Preclinical evaluation and clinical translation of magnetite-based nanomedicines. Journal of Drug Delivery Science and Technology, 54, 101282. https://doi.org/10.1016/j.jddst.2019.101282 DOI: https://doi.org/10.1016/j.jddst.2019.101282
Brollo, M.E.F., Orozco-Henao, J.M., López-Ruiz, R., Muraca, D., Dias, C.S.B., Pirota, K.R., & Knobel, M. (2016). Magnet-ic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles. Journal of Magnetism and Magnetic Materials, 397, 20–27. https://doi.org/10.1016/j.jmmm.2015.08.081 DOI: https://doi.org/10.1016/j.jmmm.2015.08.081
Kydralieva, K.A., Dzhardimalieva, G.I., Yurishcheva, A.A., & Jorobekova, S.J. (2016). Nanoparticles of magnetite in pol-ymer matrices: synthesis and properties. Journal of Inorganic and Organometallic Polymers and Materials, 26, 1212–1230. https://doi.org/10.1007/s10904-016-0436-1 DOI: https://doi.org/10.1007/s10904-016-0436-1
Ansari, L., & Malaekeh-Nikouei, B. (2017). Magnetic silica nanocomposites for magnetic hyperthermia applications. Inter-national Journal of Hyperthermia, 33(3), 354–363. https://doi.org/10.1080/02656736.2016.1243736 DOI: https://doi.org/10.1080/02656736.2016.1243736
Taufiq, A., Nikmah, A., Hidayat, A., Sunaryono, S., Mufti, N., Hidayat, N., & Susanto, H. (2020). Synthesis of magnet-ite/silica nanocomposites from natural sand to create a drug delivery vehicle. Heliyon, 6(4), e03784. https://doi.org/10.1016/j.heliyon.2020.e03784 DOI: https://doi.org/10.1016/j.heliyon.2020.e03784
Sun, H., Xie, G., He, D., & Zhang, L. (2020). Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanis-tic insights and kinetic modeling. Applied Catalysis B: Environmental, 267, 118383. https://doi.org/10.1016/j.apcatb.2019.118383 DOI: https://doi.org/10.1016/j.apcatb.2019.118383
Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D.D., & O'Shea, K.E. (2014). Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology, 48(14), 8078–8085. https://doi.org/10.1021/es405804m DOI: https://doi.org/10.1021/es405804m
Kicheeva, A.G., Sushko, E.S., Bondarenko, L.S., Kydralieva, K.A., Pankratov, D.A., Tropskaya, N.S., Dzeranov, A.A., Dzhardimalieva, G.I., Zarrelli, M., & Kudryasheva, N.S. (2023). Functionalized magnetite nanoparticles: characterization, bioef-fects, and role of reactive oxygen species in unicellular and enzymatic systems. International Journal of Molecular Sciences, 24(2), 1133. https://doi.org/10.3390/ijms24021133 DOI: https://doi.org/10.3390/ijms24021133
Rusdiarso, B., & Basuki, R. (2020). Stability improvement of humic acid as sorbent through magnetite and chitin modifica-tion. Jurnal Kimia Sains & Aplikasi, 23(5), 152–159. https://doi.org/10.14710/jksa.23.5.152-159 DOI: https://doi.org/10.14710/jksa.23.5.152-159
Bondarenko, L., Baimuratova, R., Dzeranov, A., Pankratov, D., Kicheeva, A., Sushko, E., Kudryasheva, N., Valeev, R., Tropskaya, N., Dzhardimalieva, G., & Kydralieva, K. (2024). Fenton reaction-driven pro-oxidant synergy of ascorbic acid and iron oxide nanoparticles in MIL-88B(Fe). New Journal of Chemistry, 48(22), 10142–10160. https://doi.org/10.1039/D4NJ00963K DOI: https://doi.org/10.1039/D4NJ00963K
Joglekar, M., Roggers, R.A., Zhao, Y., & Trewyn, B.G. (2013). Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Advances, 3(7), 2454–2461. https://doi.org/10.1039/C2RA22264G DOI: https://doi.org/10.1039/c2ra22264g
Teng, W., Yang, Z., Wang, S., Xiong, D., Chen, Y., & Wu, Z. (2021). Toxicity evaluation of mesoporous silica particles Santa Barbara No. 15 amorphous in human umbilical vein endothelial cells: influence of particle morphology. Journal of Applied Toxicology, 41(9), 1467–1478. https://doi.org/10.1002/jat.4137 DOI: https://doi.org/10.1002/jat.4137
Yu, T., Malugin, A., & Ghandehari, H. (2011). Impact of silica nanoparticle design on cellular toxicity and hemolytic activ-ity. ACS Nano, 5(7), 5717–5728. https://doi.org/10.1021/nn2013904 DOI: https://doi.org/10.1021/nn2013904
Ahmad, J., Ahamed, M., Akhtar, M.J., Alrokayan, S.A., Siddiqui, M.A., Musarrat, J., & Al-Khedhairy, A.A. (2012). Apopto-sis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicology and Ap-plied Pharmacology, 259(2), 160–168. https://doi.org/10.1016/j.taap.2011.12.020 DOI: https://doi.org/10.1016/j.taap.2011.12.020
Hegde, B., Bodduluri, S.R., Satpathy, S.R., Alghsham, R.S., Jala, V.R., Uriarte, S.M., Chung, D.H., Lawrenz, M.B., & Haribabu, B. (2018). Inflammasome-independent leukotriene B4 production drives crystalline silica-induced sterile inflammation. The Journal of Immunology, 200(10), 3556–3567. https://doi.org/10.4049/jimmunol.1701504 DOI: https://doi.org/10.4049/jimmunol.1701504
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., & Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9(8), 847–856. https://doi.org/10.1038/ni.1631 DOI: https://doi.org/10.1038/ni.1631
Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M., & Núñez, G. (2013). K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 38(6), 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016 DOI: https://doi.org/10.1016/j.immuni.2013.05.016
Rossol, M., Pierer, M., Raulien, N., Quandt, D., Meusch, U., Rothe, K., Schubert, K., Schöneberg, T., Schaefer, M., Krügel, U., Smajilovic, S., Bräuner-Osborne, H., Baerwald, C., & Wagner, U. (2012). Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications, 3, 1329. https://doi.org/10.1038/ncomms2339 DOI: https://doi.org/10.1038/ncomms2339
Decan, N., Wu, D., Williams, A., Bernatchez, S., Johnston, M., Hill, M., & Halappanavar, S. (2016). Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Mutation Re-search/Genetic Toxicology and Environmental Mutagenesis, 796, 8–22. https://doi.org/10.1016/j.mrgentox.2015.11.011 DOI: https://doi.org/10.1016/j.mrgentox.2015.11.011
Jiang, L., Yu, Y., Li, Y., Yu, Y., Duan, J., Zou, Y., Li, Q., & Sun, Z. (2016). Oxidative damage and energy metabolism dis-order contribute to the hemolytic effect of amorphous silica nanoparticles. Nanoscale Research Letters, 11(1), 57. https://doi.org/10.1186/s11671-016-1280-5 DOI: https://doi.org/10.1186/s11671-016-1280-5
Nemmar, A., Beegam, S., Yuvaraju, P., Yasin, J., Shahin, A., & Ali, B.H. (2014). Interaction of amorphous silica nanoparti-cles with erythrocytes in vitro: role of oxidative stress. Cellular Physiology and Biochemistry, 34(2), 255–265. https://doi.org/10.1159/000362996 DOI: https://doi.org/10.1159/000362996
Vis, B., Hewitt, R.E., Faria, N., Bastos, C., Chappell, H., Pele, L., Jugdaohsingh, R., Kinrade, S.D., & Powell, J.J. (2018). Non-functionalized ultrasmall silica nanoparticles directly and size-selectively activate T cells. ACS Nano, 12(11), 10843–10854. https://doi.org/10.1021/acsnano.8b03363 DOI: https://doi.org/10.1021/acsnano.8b03363
Bulich, A.A., & Isenberg, D.L. (1981). Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA transactions, 20(1), 29–33.
Girotti, S., Ferri, E.N., Fumo, M.G., & Maiolini, E. (2008). Monitoring of environmental pollutants by bioluminescent bac-teria. Analytica Chimica Acta, 608(1), 2–29. https://doi.org//10.1016/j.aca.2007.12.008 DOI: https://doi.org/10.1016/j.aca.2007.12.008
Roda, A., Pasini, P., Mirasoli, M., Michelini, E., & Guardigli, M. (2004). Biotechnological application of bioluminescence and chemiluminescence. Trends in Biotechnology, 22(6), 295–303. https://doi.org//10.1016/j.tibtech.2004.03.011 DOI: https://doi.org/10.1016/j.tibtech.2004.03.011
Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G.A., Tahir, M.A., & Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Science of the Total Environment, 626, 1295–1309. https://doi.org//10.1016/j.scitotenv.2018.01.066 DOI: https://doi.org/10.1016/j.scitotenv.2018.01.066
Kudryasheva, N.S. (2006). Bioluminescence and exogenous compounds: Physico-chemical basis for bioluminescent assay. Journal of Photochemistry and Photobiology B: Biology, 83(1), 77–86, https://doi.org/10.1016/j.jphotobiol.2005.10.003 DOI: https://doi.org/10.1016/j.jphotobiol.2005.10.003
Kudryasheva, N., Vetrova, E., Kuznetsov, A., Kratasyuk, V., & Stom, D. (2002). Bioluminescence assays: Effects of qui-nones and phenols. Ecotoxicology and Environmental Safety, 53(2), 221–225. https://doi.org/10.1006/eesa.2002.2214 DOI: https://doi.org/10.1006/eesa.2002.2214
Kudryasheva, N., Kratasyuk, V., Esimbekova, E., Vetrova, E., Nemtseva, E., & Kudinova, I. (1998). Development of bio-luminescent bioindicators for analysis of environmental pollution. Field Analytical Chemistry & Technology, 2(5), 277–280. https://doi.org/10.1002/(SICI)1520-6521(1998)2:5 %3C277::AID-FACT4 %3E3.0.CO;2-P DOI: https://doi.org/10.1002/(SICI)1520-6521(1998)2:5<277::AID-FACT4>3.0.CO;2-P
Kratasyuk, V.A. (1990). Principles of luciferase biotesting. In B. Jezowska-Trzebiatowska, B. Kochel, J. Stawinski, & I. Strek (Eds.), Biological Luminescence (pp.550–558). World Scientific, Singapore.
Vetrova, E.V., Kudryasheva, N.S., & Kratasyuk, V.A. (2007). Redox compounds influence on the NAD(P)H:FMN–oxidoreductase–luciferase bioluminescent system. Photochemical & Photobiological Sciences, 6(1), 35–40. https://doi.org/10.1039/b608152e DOI: https://doi.org/10.1039/b608152e
Bondarenko, L.S., Kovel, E.S., Kydralieva, K.A., Dzhardimalieva, G.I., Illés, E., Tombácz, E., Kicheeva, A.G., & Kudryasheva, N.S. (2020). Effects of modified magnetite nanoparticles on bacterial cells and enzyme reactions. Nanomaterials, 10(8), 1499. https://doi.org/10.3390/nano10081499 DOI: https://doi.org/10.3390/nano10081499
Kudryasheva, N.S., Kovel, E.S., Sachkova, A.S., Vorobeva, A.A., Isakova, V.G., & Churilov, G.N. (2017). Bioluminescent enzymatic assay as a tool for studying antioxidant activity and toxicity of bioactive compounds. Photochemistry and Photobiology, 93(2), 536–540. https://doi.org/10.1111/php.12639 DOI: https://doi.org/10.1111/php.12639
Sachkova, A.S., Kovel, E.S., Churilov, G.N., Stom, D.I., & Kudryasheva, N.S. (2019). Biological activity of carbonic nano-structures–Comparison via enzymatic bioassay. Journal of Soils and Sediments, 19, 2689–2696. https://doi.org/10.1007/s11368-018-2134-9 DOI: https://doi.org/10.1007/s11368-018-2134-9
Kovel, E.S., Kicheeva, A.G., Vnukova, N.G., Churilov, G.N., Stepin, E.A., & Kudryasheva, N.S. (2021). Toxicity and anti-oxidant activity of fullerenol C60,70 with low number of oxygen substituents. International Journal of Molecular Sciences, 22(12), 6382. https://doi.org/10.3390/ijms22126382 DOI: https://doi.org/10.3390/ijms22126382
Sushko, E.S., Vnukova, N.G., Churilov, G.N., & Kudryasheva, N.S. (2022). Endohedral Gd-containing fullerenol: Toxicity, antioxidant activity, and regulation of reactive oxygen species in cellular and enzymatic systems. International Journal of Molecu-lar Sciences, 23(9), 5152. https://doi.org/10.3390/ijms23095152 DOI: https://doi.org/10.3390/ijms23095152
Stepin, E.A., Sushko, E.S., Vnukova, N.G., Churilov, G.N., Rogova, A.V., Tomilin, F.N., & Kudryasheva, N.S. (2024). Ef-fects of Endohedral Gd-containing fullerenols with a different number of oxygen substituents on bacterial bioluminescence. Inter-national Journal of Molecular Sciences, 25(2), 708. https://doi.org/10.3390/ijms25020708 DOI: https://doi.org/10.3390/ijms25020708
Sies, H., & Jones, D.P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Re-views Molecular Cell Biology, 21(7), 363–383. https://doi.org/10.1038/s41580-020-0230-3 DOI: https://doi.org/10.1038/s41580-020-0230-3
Fan, J., Ren, D., Wang, J., Liu, X., Zhang, H., Wu, M., & Yang, G. (2020). Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death & Disease, 11(2), 126. https://doi.org/10.1038/s41419-020-2317-3 DOI: https://doi.org/10.1038/s41419-020-2317-3
Su, L.-J., Zhang, J.-H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z.-Y. (2019). Reactive oxygen spe-cies-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity, 2019, 5080843. https://doi.org/10.1155/2019/5080843 DOI: https://doi.org/10.1155/2019/5080843
Tavsan, Z., & Kayali, H.A. (2019). Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reac-tive oxygen species, apoptosis, cell cycle and invasion. Biomedicine & Pharmacotherapy, 116, 109004. https://doi.org/10.1016/j.biopha.2019.109004 DOI: https://doi.org/10.1016/j.biopha.2019.109004
Fleury, C., Mignotte, B., & Vayssière, J.-L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Bio-chimie, 84, 131–141. https://doi.org/10.1016/S0300-9084(02)01369-X DOI: https://doi.org/10.1016/S0300-9084(02)01369-X
Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M., & Fujita, M. (2020). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. International Journal of Molecular Sciences, 21(22), 8695. https://doi.org/10.3390/ijms21228695 DOI: https://doi.org/10.3390/ijms21228695
Kicheeva, A.G., Sushko, E.S., Bondarenko, L.S., Baimuratova, R.K., Kydralieva, K.A., Schwaminger, S.P., Prassl, R., Tropskaya, N.S., Dzhardimalieva, G.I., Smirnykh, D.V., Martynova, A.A., & Kudryasheva, N.S. (2024). Cytotoxic and radical ac-tivities of metal-organic framework modified with iron oxide: Biological and physico-chemical analyses. Chemico-Biological In-teractions, 399, 111150. https://doi.org/10.1016/j.cbi.2024.111150 DOI: https://doi.org/10.1016/j.cbi.2024.111150
Li, Y., Zhu, T., Zhao, J., & Xu, B. (2012). Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling. Environmental Science & Technology, 46(18), 10302–10309. https://doi.org/10.1021/es301834r DOI: https://doi.org/10.1021/es301834r
Wolf, M., Kappler, A., Jiang, J., & Meckenstock, R.U. (2009). Effects of humic substances and quinones at low concentra-tions on ferrihydrite reduction by Geobacter metallireducens. Environmental Science & Technology, 43(15), 5679–5685. https://doi.org/10.1021/es803647r DOI: https://doi.org/10.1021/es803647r
Visser, S.A. (1964). Oxidation-reduction potentials and capillary activities of humic acids. Nature, 204, 581. https://doi.org/10.1038/204581a0 DOI: https://doi.org/10.1038/204581a0
Shnoll S.E. (2009). Cosmophysical factors in random processes. Svenska fysikarkivat. https://digitalphysics.ru/pdf/Kaminskii_A_V/shnoll2009ru.pdf [in Russian].
Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical thera-peutic approach? Nature Reviews Drug Discovery, 8(7), 579–591. https://doi.org/10.1038/nrd2803 DOI: https://doi.org/10.1038/nrd2803
Hastings, J.W., & Gibson, Q.H. (1963). Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. Journal of Biological Chemistry, 238(7), 2537-2554. https://doi.org/10.1016/S0021-9258(19)68004-X DOI: https://doi.org/10.1016/S0021-9258(19)68004-X
Lee, J., Müller, F., & Visser, A.J.W.G. (2018). The sensitized bioluminescence mechanism of bacterial luciferase. Photo-chemistry and Photobiology, 95(3), 679–704. https://doi.org/10.1111/php.13063 DOI: https://doi.org/10.1111/php.13063
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arina G. Kicheeva, Ekaterina S. Sushko, Artur A. Dzeranov, Lyubov S. Bondarenko, Natalya S. Tropskaya, Kamila A. Kydralieva, Nadezhda S. Kudryasheva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
