Synthesis and Optical Properties of Substituted Derivatives of Oxazolo[5,4-b]Pyridine

Authors

  • Irina V. Palamarchuk School of Natural Sciences, University of Tyumen, Tyumen, Russia
  • Ivan V. Kulakov School of Natural Sciences, University of Tyumen, Tyumen, Russia
  • Svetlana S. Volkova School of Natural Sciences, University of Tyumen, Tyumen, Russia

DOI:

https://doi.org/10.31489/2959-0663/4-25-15

Keywords:

3-aminopyridin-2(1H)-ones, oxazolo[5,4-b]pyridines, intramolecular heterocyclization, biological activity, UV spectroscopy, optical properties, quantum yield, Stokes shift

Abstract

In continuation of our work on the synthesis and study of new properties of 4-substituted 3-aminopyridin-2-(1H)-ones, we carried out the synthesis and subsequent cyclization of the corresponding oxalyl amides. The aminolysis reaction of diethyl oxalate with 3-aminopyridin-2-(1H)-ones was carried out by boiling without solvent at a temperature of 150 °C. In this case, intermediate oxalic acid monoamides with the remainder of the ester group were also recorded and separately identified. It was shown that under the action of phosphorus oxychloride the synthesized oxalic acid diamides undergo fairly smooth intramolecular cyclization into symmetrical bis-derivatives of oxazolo[5,4-b]pyridine. The photoluminescent properties of our newly obtained oxazolo[5,4-b]pyridine derivatives 5-8a-c and 2,2'-bisoxazolo[5,4-b]pyridines 4a-c were studied, including such parameters as maximum absorption (λ), molar absorption coefficient (ε), Stokes shift, and quantum yield. All compounds were found to luminesce with a bluish-blue color and exhibit maximum absorption wavelengths in the range of 299–333 nm (in acetonitrile) and 281–317 nm (in toluene), which is associated with the π–π* electron transition. A fairly large Stokes shift (83–128 nm) is observed for all compounds. It was also found that the presence of a carboxyl linker at the C-2 position of compounds 5-8a-c does not significantly affect the shift of the absorption band maxima and other spectral characteristics of the molecules. It should be noted that symmetrical conjugated 2,2'-bisoxazolo[5,4-b]pyridines 4a-c, featuring two oxazolo[5,4-b]pyridine rings, exhibit fairly high quantum yield values (φ ≈ 0.70–0.82) compared to the known standard quinine sulfate (φ ≈ 0.55), allowing their potential application as effective fluorophores.

References

Demmer, C. S. & Bunch, L. (2015). Benzoxazoles and oxazolopyridines in medicinal chemistry studies. European Journal of Medicinal Chemistry, 97, 778–785. https://doi.org/10.1016/j.ejmech.2014.11.064

Qi, X. Y., Cao, Y., Li, Y. L., Mo, M. G., Zhou, L. & Ye, D. Y. (2017). Discovery of the selective sphingomyelin synthase 2 inhibitors with the novel structure of oxazolopyridine. Bioorganic & Medicinal Chemistry Letters, 27(15), 3511–3515. https://doi.org/10.1016/j.bmcl.2017.05.074

Kempson, J., Spergel, S. H., Guo, J., Quesnelle, C., Gill, P., Belanger, D., Dyckman, A. J., Li, T., Watterson, S. H., Lange-vine, C. M., Das, J., Moquin, R. V., Furch, J. A., Marinier, A., Dodier, M., Martel, A., Nirschl, D., Van-Kirk, K. Burke, J.R. Pattoli, M. A., Gillooly, K., McIntyre, K. W., Chen, L., Yang, Z., Marathe, P. H., Wang-Iverson, D., Dodd, J. H., McKinnon, M., Barrish, J. C. & Pitts, W. J. (2009). Novel tricyclic inhibitors of IκB kinase. Journal of medicinal chemistry, 52(7), 1994–2005. https://doi.org/10.1021/jm8015816

Bemis, J. E., Vu, C. B., Xie, R., Nunes, J. J., Ng, P. Y., Disch, J. S., Milne, J. C., Carney, D. P., Lynch, A. V., Jin, L., Smith, J. J., Lavu, S., Iffland, A., Jirousek, M. R. & Perni, R. B. (2009). Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorganic & Medicinal Chemistry Letters, 19(8), 2350–2353. https://doi.org/10.1016/j.bmcl.2008.11.106

Yeh, V. & Iyengar, R. (2008). Oxazoles. Comprehensive Heterocyclic Chemistry III, 4, 487–543. https://doi.org/10.1016/B978-008044992-0.00404-1

Yalçin I. & Şener E. (1993). QSARs of some novel antibacterial benzimidazoles, benzoxazoles, and oxazolopyridines against an enteric gram-negative rod; K. pneumoniae. International journal of pharmaceutics, 98(1–3), 1–8. https://doi.org/10.1016/0378-5173(93)90034-D .

Park, H. R., Kim, J., Kim, T., Jo, S., Yeom, M., Moon, B., Choo, I. H., Lee, J., Lim, E. J.., Park, K. D., Min, S. J., Nam, G., Keum, G., Lee, C. J. & Choo, H. (2013). Oxazolopyridines and thiazolopyridines as monoamine oxidase B inhibitors for the treat-ment of Parkinson's disease. Bioorganic & medicinal chemistry, 21(17), 5480–5487. https://doi.org/10.1016/j.bmc.2013.05.066

Viaud, M. C., Jamoneau, P., Flouzat, Ch., Bizot-Espiard, J. G., Pfeiffer, B., Renard, P., Caignard, D. H., Adam, G. & Guil-laumet, G. (1995). N-Substituted Oxazolo[5,4-b]pyridin-2(1H)-ones: A New Class of Non-Opiate Antinociceptive Agents. Journal of Medicinal Chemistry, 38(8), 1278–1286. https://doi.org/10.1021/jm00008a006

Huang, Z.; Zhang, Y.; Song, Y. WO Patent 2011085643.

Tekiner-Gulbas, B., Temiz-Arpaci, O., Yildiz, I., Aki-Sener, E., & Yalcin, I. (2006). 3D-QSAR study on heterocyclic topoi-somerase II inhibitors using CoMSIA. SAR and QSAR in Environmental Research, 17(2), 121–132. https://doi.org/10.1080/10659360600636105

Yildiz-Oren, I., Yalcin, I., Aki-Sener, E. & Ucarturk, N. (2004). Synthesis and structure–activity relationships of new antimicrobial active multisubstituted benzazole derivatives. European Journal of Medicinal Chemistry, 39(3), 291–298. https://doi.org/10.1016/j.ejmech.2003.11.014

Yalçin, İ., Ören, İ., Şener, E., Akin, A. & Uçartürk, N. (1992). The synthesis and the structure-activity relationships of some substituted benzoxazoles, oxazolo(4,5-b)pyridines, benzothiazoles and benzimidazoles as antimicrobial agents. European journal of medicinal chemistry, 27(4), 401–406. https://doi.org/10.1016/0223-5234(92)90154-S

Shatsauskas, A. L., Zablotskii, Y. A., Chernenko, S. A., Zheleznova T. Yu., Shuvalov V. Yu., Kostyuchenko A. S. & Fisyuk A. S. (2021). Synthesis and photophysical properties of the products of the reaction of 5-methyl-7-phenyl[1,3]oxazolo[5,4-b]pyridin-2(1H)-one with amino acids. Chemistry of Heterocyclic Compounds, 57(12), 1212–1219. https://doi.org/10.1007/s10593-021-03045-8

Mac M., Baran W., Uchacz T., Baran B., Suder M. & Leśniewski S. (2007). Fluorescence properties of the derivatives of oxazolo[4,5-b]pyridyne, Journal of Photochemistry and Photobiology A: Chemistry, 192(2–3), 188–196. https://doi.org/10.1016/j.jphotochem.2007.05.023

El’chaninov, M. M., Aleksandrov, A. A. & Illenzeer, E. V. (2014). Synthesis and properties of 2-(2-furyl)[1,3]oxazolo[4,5-b]pyridine. Russian Journal of Organic Chemistry, 50(12), 1826–1828. https://doi.org/10.1134/S1070428014120197

Aleksandrov, A. A. & El’chaninov, M. M. (2015). Synthesis and reactivity of 2-(2-thienyl)oxazolo[4,5-b]pyridine. Russian Journal of General Chemistry, 85(4), 858–860. https://doi.org/10.1134/S1070363215040155

Harrison, S. T., Mulhearn, J., Wolkenberg, S. E., Miller, P. J., O’Malley, S. S., Zeng, Z., Williams, D. L., Hostetler, E. D., Sanabria-Bohórquez, S., Gammage, L., Fan, H., Sur, C., Culberson, J. C., Hargreaves, R. J., Cook, J. J., Hartman, G. D. & Barrow, J. C. (2011). Synthesis and evaluation of 5-fluoro-2-aryloxazolo[5,4-b]pyridines as β-amyloid PET ligands and identification of MK-3328. ACS Medicinal Chemistry Letters, 2(7), 498–502. https://doi.org/10.1021/ml200018n

Doise, M., Dennin, F., Blondeau, D., & Sliwa, H. (1990). Synthesis of novel heterocycles: Oxazolo[4,5-b]pyridines and oxa-zolo[4,5-d]pyrimidines. Tetrahedron Letters, 31(8), 1155–1156. https://doi.org/10.1016/S0040-4039(00)88750-X

Doise, M., Blondeau, D. & Sliwa, H. (1992). Syntheses of Oxazolo[4,5-b]pyridines and [4,5-d]pyrimidines. Synthetic Com-munications, 22(20), 2891–2901. https://doi.org/10.1080/00397919208021112

Myllym ä ki, M. J. & Koskinen, A. M. P. (2007). A rapid method for the preparation of 2-substituted oxazolo[4,5-b]pyridines using microwave-assisted direct condensation reactions. Tetrahedron Lett. 48(13), 2295–2298. https://doi.org/10.1016/j.tetlet.2007.01.161

Palamarchuk, I.V., Matsukevich, M. V., Kulakov, I. V., Seilkhanov, T. M. & Fisyuk, A. S. (2019). Synthesis of N-substituted 2-aminomethyl-5-methyl-7-phenyloxazolo[5,4-b]pyridines. Chemistry of Heterocyclic Compounds, 55(8), 788–791. https://doi.org /10.1007/s10593-019-02537-y

Shatsauskas, A. L., Abramov, A. A., Saibulina, E. R., Palamarchuk, I. V., Kulakov, I. V. & Fisyuk, A. S. (2017). Synthesis of 3-amino-6-methyl-4-phenylpyridin-2(1H)-one and its derivatives. Chemistry of Heterocyclic Compounds, 53(2), 186–191. https://doi.org/10.1007/s10593-017-2038-4

Palamarchuk, I. V. & Kulakov, I. V. (2024). A New Method for Obtaining Carboxylic Derivatives of Oxazolo[5,4-b]-pyridine Based on 3-Aminopyridine-2(1H)-ones. Eurasian Journal of Chemistry, 29(2(114)), 32–44. https://doi.org/10.31489/2959-0663/2-24-11

Shatsauskas, A. L., Shatalin, Y. V., Shubina, V. S., Chernenko, S. A., Kostyuchenko, A. S. & Fisyuk, A. S. (2022). 5-Ethyl-5,6-dihydrobenzo[c][1,7]naphthyridin-4(3H)-ones — A new class of fluorescent dyes. Dyes and Pigments, 204, 110388. https://doi.org/10.1016/j.dyepig.2022.110388

Kostyuchenko, A. S., Zheleznova, T. Y., Stasyuk, A. J., Kurowska, A., Domagala, W., Pron, A. & Fisyuk, A. S. (2017). Syn-thesis and optical properties of new 5'-aryl-substituted 2,5-bis(3-decyl-2,2'-bithiophen-5-yl)-1,3,4-oxadiazoles. Beilstein Journal of Organic Chemistry, 13(1), 313–322. https://doi.org/10.3762/bjoc.13.34

Williams, A. T. R., Winfield, S. A. & Miller, J. N. (1983). Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst, 108(1290), 1067–1071. https://doi.org/10.1039/AN9830801067

Kurowska, A., Zassowski, P., Kostyuchenko, A. S., Zheleznova, T. Y., Andryukhova, K. V., Fisyuk, A. S., Pron, A. & Do-magala, W. (2017). Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives. Physical Chemistry Chemical Physics, 19(44), 30261–30276., https://doi.org/10.1039/C7CP05155G

Kulakov, I. V., Matsukevich, M. V., Shulgau, Z. T., Sergazy, S., Seilkhanov, T. M., Puzari, A. & Fisyuk, A. S. (2015). Syn-thesis and antiradical activity of 4-aryl(hetaryl)-substituted 3-aminopyridin-2(1Н)-ones. Chemistry of Heterocyclic Compounds, 51(11), 991–996. https://doi.org/10.1007/s10593-016-1809-7

Fisyuk, A. S., Kulakov, I. V., Goncharov, D. S., Nikitina, O. S., Bogza, Y. P. & Shatsauskas, A. L. (2014). Synthesis of 3-aminopyridin-2(1H)-ones and 1H-pyrido[2,3-b][1,4]oxazin-2(3H)-ones. Chemistry of Heterocyclic Compounds, 50(2), 217–224. https://doi.org/10.1007/s10593-014-1464-9

Synthesis and Optical Properties of Substituted Derivatives of Oxazolo[5,4-b]Pyridine

Downloads

Published

2025-11-26

How to Cite

Palamarchuk, I. V., Kulakov, I. V., & Volkova, S. S. (2025). Synthesis and Optical Properties of Substituted Derivatives of Oxazolo[5,4-b]Pyridine. EURASIAN JOURNAL OF CHEMISTRY. https://doi.org/10.31489/2959-0663/4-25-15

Issue

Section

ONLINE FIRST