Biodegradable Polyethylene-Based Composites Filled with Cellulose Micro- and Nanoparticles
DOI:
https://doi.org/10.31489/2959-0663/2-23-16Keywords:
cellulose microparticles, nanoparticles, polyethylene, composites, mechanical properties, biodegradabilityAbstract
Composite materials filled with cellulose particles (microcrystalline cellulose and nanocellulose) have good prospects for use in various fields. Microcrystalline cellulose (MCC) and nanocellulose (NC) were isolated by chemical and physical methods and investigated. Composite materials based on polyethylene (PE) were obtained using MCC and NC as fillers (5–20 wt.%) and maleic anhydride grafted low molecular weight polyethylene (MA-g-LMPE) as a compatibilizer. The structure and morphology of the composites and fillers were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, thermal analysis (TA), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the strength properties were determined by tensile testing. An increase in the crystallinity index and mechanical strength of composites at low filler contents (up to 5 wt.%) was revealed. The size of the cellulose particles significantly affects the structure and properties of composites. Although the general picture of the effect of fillers on the crystalline structure and mechanical properties is similar, the addition of NC had a greater effect than МСС. The results of this study showed the possibility of using MCC and NC as reinforcement materials in composites, and they have biodegradable properties.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.