Graft Polymerization of Allylamine for the Modification of PET Track-Etched Membrane
DOI:
https://doi.org/10.31489/2959-0663/3-25-3Keywords:
track-etched membrane, poly(ethylene terephthalate), photo-induced graft polymerization, allylamine, CO2 capture, UV irradiation, surface functionalization, porous structure, polymeric membranes, modificationAbstract
Track-etched membranes (TMs), characterized by their precisely controlled pore size, geometry, and distribution, offer a promising platform for the development of advanced membrane systems and serve as model membranes for testing and optimizing surface modification techniques. This study presents a perspective modification of poly(ethylene terephthalate) track-etched membranes (PET TM) based on photo-induced graft polymerization of allylamine (AlAm) to introduce primary amine groups on the membrane surface. The polymerization process was optimized by evaluating key parameters, including reaction time, monomer concentration, solvent, and distance from UV-lamp. Optimal conditions for photoinduced graft polymerization were found: grafting time 60 minutes, AlAm monomer concentration 50 %, 2-propanol as a solvent and distance to UV lamp 10 cm. These parameters allowed effective modification of the polymer while maintaining the integrity of the membrane porous structure. The modified membranes were characterized using SEM-EDX, ATR FTIR, and UV-spectroscopy. The results demonstrate the successful fabrication of membranes with a high amino group content (up to 10.6±0.3 µmol/g) while preserving their porous structure. This functionalization enhances the practical potential for the environment and biomedical fields.
References
Rossouw, A., Nechaev, A., & Apel, P. (2021). Modification of polyethylene terephthalate track etched membranes by planar magnetron sputtered Ti/TiO2 thin films. Thin Solid Films, 725(138641), 1–9. https://doi.org/10.1016/j.tsf.2021.138641
Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(43), 559–566. https://doi.org/10.1016/S1350-4487(01)00228-1
Apel, P. Y., Bashevoy, V. V., & Trautmann, C. (2016). Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Physical Chemistry Chemical Physics, 18(6), 25421–25433. https://doi.org/10.1039/C6CP05465J
Kaya, D., & Keçeci, K. (2020). Review—Track-Etched Nanoporous Polymer Membranes as Sensors: A Review. Journal of The Electrochemical Society, 167(3), 037543. https://doi.org/10.1149/1945-7111/AB67A7
Vinogradov, I. I., Drozhzhin, N. A., Kravets, L. I., Rossouw, A., Vershinina, T. N., & Nechaev, A. N. (2024). Formation of Hybrid Membranes for Water Desalination by Membrane Distillation. Colloid Journal, 86(5), 667–679. https://doi.org/10.1134/S1061933X24600519
Zhdanov, G., Nyhrikova, E., Meshcheryakova, N., & Kristavchuk, O. (2022). A Combination of Membrane Filtration and Raman-Active DNA Ligand Greatly Enhances Sensitivity of SERS-Based Aptasensors for Influenza A Virus. Frontiers in Chemis-try, 10(June), 1–14. https://doi.org/10.3389/fchem.2022.937180
Ulbricht, M., Matuschewski, H., Oechel, A., & Hicke, H. (1996). Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. Journal of Membrane Science, 115, 31–47.
Markov, P. A., Vinogradov, I. I., Kostromina, E., Eremin, P. S., Gilmutdinova, I. R., Kudryashova, I. S., Greben, A., Rachin, A. P., & Nechaev, A. N. (2022). A wound dressing based on a track-etched membrane modified by a biopolymer nanoframe : physi-cochemical and biological characteristics. European Polymer Journal, 181(November), 111709. https://doi.org/10.1016/j.eurpolymj.2022.111709
Vinogradov, I. I., Andreev, E. V, Yushin, N. S., Sokhatskii, A. S., Altynov, V. A., & Gustova, M. V. (2023). A Hybrid Mem-brane for the Simultaneous Selective Sorption of Cesium in the Ionic and Colloid Forms. Theoretical Foundations of Chemical Engineering, 57(4), 549–562. https://doi.org/10.1134/S0040579523040498
Pereao, O, Uche, C., Bublikov, P. S., Bode-aluko, C., Rossouw, A., & Vinogradov, I. I. (2021). Chitosan / PEO nanofibers electrospun on metallized track-etched membranes : fabrication and characterization. Materials Today Chemistry, 20, 100416. https://doi.org/10.1016/j.mtchem.2020.100416
Pereao, Omoniyi, Laatikainen, K., Bode-aluko, C., Kochnev, I., Fatoba, O., Nechaev, A. N., & Petrik, L. (2020). Adsorption of Ce3+ and Nd3+ by diglycolic acid functionalised electrospun polystyrene nanofiber from aqueous solution. Separation and Purifi-cation Technology, 233 (September 2019), 116059. https://doi.org/10.1016/j.seppur.2019.116059
Omertassov, D. D., Shakayeva, A. K., Zhatkanbayeva, Z. K., Shakirzyanov, R. I., Zdorovets, M. V., Güven, O., & Korolkov, I. V. (2025). HKUST-1 Synthesis in PET Track-Etched Membranes via Conversion of Deposited Cu for Carbon Dioxide Capture. ACS Omega, 10, 30271. https://doi.org/10.1021/ACSOMEGA.5C01493/ASSET/IMAGES/LARGE/AO5C01493_0011.JPEG
Muslimova, I. B., Zhumanazar, N., Melnikova, G. B., Yeszhanov, A. B., Zhatkanbayeva, Z. K., Chizhik, S. A., Zdorovets, M. V., Güven, O., & Korolkov, I. V. (2024). Preparation and application of stimuli-responsive PET TeMs: RAFT graft block copol-ymerisation of styrene and acrylic acid for the separation of water–oil emulsions. RSC Advances, 14(20), 14425–14437. https://doi.org/10.1039/D4RA02117G
Shakayeva, Aigerim Kh, Yeszhanov, A. B., Borissenko, A. N., Kassymzhanov, M. T., Zhumazhanova, A. T., Khlebnikov, N. A., Nurkassimov, A. K., Zdorovets, M. V., Güven, O., & Korolkov, I. V. (2024). Surface Modification of Polyethylene Tereph-thalate Track-Etched Membranes by 2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl Acrylate for Application in Water Desalination by Direct Contact Membrane Distillation. Membranes, 14(7), 145. https://doi.org/10.3390/MEMBRANES14070145/S1
Ryntz, R. A. (1994). Coating adhesion to low surface free energy substrates. Progress in Organic Coatings, 25(1), 73–83. https://doi.org/10.1016/0300-9440(94)00503-6
Noeske, M., Degenhardt, J., Strudthoff, S., & Lommatzsch, U. (2004). Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. International Journal of Adhesion and Adhesives, 24(2), 171–177. https://doi.org/10.1016/J.IJADHADH.2003.09.006
Gupta, B., Plummer, C., Bisson, I., Frey, P., & Hilborn, J. (2002). Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials, 23(3), 863–871. https://doi.org/10.1016/S0142-9612(01)00195-8
Soto Espinoza, S. L., Arbeitman, C. R., Clochard, M. C., & Grasselli, M. (2014). Functionalization of nanochannels by ra-dio-induced grafting polymerization on PET track-etched membranes. Radiation Physics and Chemistry, 94(1), 72–75. https://doi.org/10.1016/J.RADPHYSCHEM.2013.05.043
Ulbricht, M. (1996). Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities. Re-active and Functional Polymers, 31(2), 165–177. https://doi.org/10.1016/1381-5148(96)00055-7
Wu, G., Li, Y., Han, M., & Liu, X. (2006). Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N,N-diethylacrylamide onto the microfiltration membranes Nylon. Journal of Membrane Science, 283(1–2), 13–20. https://doi.org/10.1016/J.MEMSCI.2006.05.017’,
Deng, J., Wang, L., Liu, L., & Yang, W. (2009). Developments and new applications of UV-induced surface graft polymeri-zations. Progress in Polymer Science, 34(2), 156–193. https://doi.org/10.1016/j.progpolymsci.2008.06.002
Cai, Y., Wang, Z., Yi, C., Bai, Y., Wang, J., & Wang, S. (2008). Gas transport property of polyallylamine–poly(vinyl alco-hol)/polysulfone composite membranes. Journal of Membrane Science, 310(1–2), 184–196. https://doi.org/10.1016/J.MEMSCI.2007.10.052
Klinthong, W., Huang, C. H., & Tan, C. S. (2014). Polyallylamine and NaOH as a novel binder to pelletize amine-functionalized mesoporous silicas for CO2 capture. Microporous and Mesoporous Materials, 197, 278–287. https://doi.org/10.1016/J.MICROMESO.2014.06.030
Alkhabbaz, M. A., Khunsupat, R., & Jones, C. W. (2014). Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas. Fuel, 121, 79–85. https://doi.org/10.1016/J.FUEL.2013.12.018
Shiue, A., Chin, K. Y., Yin, M. J., Cheng, C. Y., Chang, S. M., & Leggett, G. (2023). Poly(allylamine)–based amine blends for separation of carbon dioxide in the indoor environment. Optik, 284. https://doi.org/10.1016/j.ijleo.2023.170973
Mathai, A., & Karanikolos, G. N. (2020). CO2 capture adsorbents functionalized by amine — bearing polymers : A review. International Journal of Greenhouse Gas Control, 96 (September 2019), 103005. https://doi.org/10.1016/j.ijggc.2020.103005
Hong, K. H., Liu, N., & Sun, G. (2009). UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator. European Polymer Journal, 45(8), 2443–2449. https://doi.org/10.1016/J.EURPOLYMJ.2009.04.026
Ruckert, D., & Geuskens, G. (1996). Surface modification of polymers—IV. Grafting of acrylamide via an unexpected mechanism using a water soluble photo-initiator. European Polymer Journal, 32(2), 201–208. https://doi.org/10.1016/0014-3057(95)00136-0
Korolkov, I. V., Mashentseva, A. A., Güven, O., & Taltenov, A. A. (2015). UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 365, 419–423. https://doi.org/10.1016/j.nimb.2015.07.057
Liu, S., Chen, H., Zhang, Y., Sun, K., Xu, Y., Morlet-Savary, F., Graff, B., Noirbent, G., Pigot, C., Brunel, D., Nechab, M., Gigmes, D., Xiao, P., Dumur, F., & Lalevée, J. (2020). Monocomponent photoinitiators based on benzophenone-carbazole structure for LED photoinitiating systems and application on 3D printing. Polymers, 12(6). https://doi.org/10.3390/polym12061394

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aigerim Kh. Shakayeva, Dias D. Omertasov, Zhanna K. Zhatkanbayeva, Ainash T. Zhumazhanova, Maxim V. Zdorovets, Ilya V. Korolkov

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.