A Mini Review on Track-Etched Membranes Potential for Sensors Development

Authors

  • Semiha D. Sütekin Department of Chemistry, Hacettepe University, Ankara, Turkiye https://orcid.org/0000-0002-4605-1116
  • Saniya R. Rakisheva Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0003-3618-4828
  • Anastassiya A. Mashentseva head of the technological track-etched membranes laboratory, The Institute of Nuclear Physics of the Re-public of Kazakhstan, Ibragimov street, 1, 050032 Almaty, Kazakhstan
  • Murat Barsbay Department of Chemistry, Hacettepe University, Ankara, Turkiye

DOI:

https://doi.org/10.31489/2959-0663/3-25-12

Keywords:

biosensors, functional nanomaterials, stimuli-responsive materials, track-etched membranes , biosensors, composite track-etched membranes , hybrid membranes

Abstract

Track-etched membranes (TeMs) have emerged as a promising class of nanostructured materials for the development of advanced sensing platforms. Owing to their highly uniform pore architecture, controllable dimensions, and versatile surface chemistry, TeMs can be used to create highly sensitive, selective, and robust sensors. This review provides a comprehensive overview of recent advances in the use of TeMs for sensor development, with a particular emphasis on functionalization strategies and application domains. The review discusses stimuli-responsive TeMs in detail which are capable of dynamic switching in response to environmental triggers such as pH, temperature, light, or redox. Functional nanochannels engineered through various modifications, such as polymer grafting or metal-organic frameworks incorporation, exhibit unique ionic transport behaviors suitable for real-time detection and biomimetic sensing. TeMs have also shown considerable potential in the detection of toxic metal ions, where tailored chemical groups and hybrid interfaces enable sub-ppb sensitivity in complex matrices. Furthermore, their capacity to host biomolecules like DNA probes, antibodies, or enzymes opens avenues for biosensing applications, including clinical diagnostics, virus detection, and neurotransmitter detecting. Additionally, their integration into wearable devices highlights their potential for flexible, real-time health monitoring. Challenges related to large-scale manufacturing, long-term stability, and standardization remain and are addressed in this review. Looking forward, TeMs have potential to bridge the gap between lab-scale innovation and practical sensor technologies, offering solutions for environmental, biomedical, and industrial applications.

References

Brighenti, R., Li, Y., & Vernerey, F. J. (2020). Smart Polymers for Advanced Applications: A Mechanical Perspective Re-view. Frontiers in Materials, 7, 548239. https://doi.org/10.3389/fmats.2020.00196

Dayyoub, T., Maksimkin, A. V., Filippova, O. V., Tcherdyntsev, V. V., & Telyshev, D. V. (2022). Shape Memory Polymers as Smart Materials: A Review. Polymers 2022, Vol. 14, Page 3511, 14(17), 3511. https://doi.org/10.3390/POLYM14173511

Alam, M. W., Islam Bhat, S., Al Qahtani, H. S., Aamir, M., Amin, M. N., Farhan, M., … Souayeh, B. (2022). Recent Pro-gress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers, 14(11), 2164. https://doi.org/10.3390/polym14112164

Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sus-tainable applications. npj Materials Degradation 2022 6:1, 6(1), 1–28. https://doi.org/10.1038/s41529-022-00277-7

Hou, W., Xiao, Y., Han, G., & Lin, J. Y. (2019). The Applications of Polymers in Solar Cells: A Review. Polymers 2019, Vol. 11, Page 143, 11(1), 143. https://doi.org/10.3390/POLYM11010143

Laftah, W. A., & Wan Abdul Rahman, W. A. (2025). Polymers for anti-fouling applications: a review. Environmental Sci-ence: Advances. https://doi.org/10.1039/D5VA00034C

Fattah-alhosseini, A., Chaharmahali, R., Alizad, S., Kaseem, M., & Dikici, B. (2024). A review of smart polymeric materi-als: Recent developments and prospects for medicine applications. Hybrid Advances, 5, 100178. https://doi.org/10.1016/J.HYBADV.2024.100178

Bratek-Skicki, A. (2021). Towards a new class of stimuli-responsive polymer-based materials — Recent advances and chal-lenges. Applied Surface Science Advances, 4, 100068. https://doi.org/10.1016/j.apsadv.2021.100068

Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A re-view. Desalination, 287, 190–199. https://doi.org/10.1016/J.DESAL.2011.04.004

Yu, M., Foster, A. B., Kentish, S. E., Scholes, C. A., & Budd, P. M. (2025). Recent progress in thin film composite mem-branes based on the polymer of intrinsic microporosity PIM-1: Preparation, properties and performance. Journal of Membrane Sci-ence, 722, 123844. https://doi.org/10.1016/J.MEMSCI.2025.123844

Wu, L., Song, Y., Xing, S., Li, Y., Xu, H., Yang, Q., & Li, Y. (2022). Advances in electrospun nanofibrous membrane sen-sors for ion detection. RSC Advances, 12(54), 34866–34891. https://doi.org/10.1039/D2RA04911B

Korolkov, I. V., Narmukhamedova, A. R., Melnikova, G. B., Muslimova, I. B., Yeszhanov, A. B., Zhatkanbayeva, Z. K., … Zdorovets, M. V. (2021). Preparation of Hydrophobic PET Track-Etched Membranes for Separation of Oil–Water Emulsion. Mem-branes 2021, Vol. 11, Page 637, 11(8), 637. https://doi.org/10.3390/MEMBRANES11080637

Ma, T., Janot, J. M., & Balme, S. (2020). Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods, 4(9), 2000366. https://doi.org/10.1002/smtd.202000366

Aimanova, N. A., Almanov, A. A., Alipoori, S., Barsbay, M., Zhumabayev, A. M., Nurpeisova, D. T., Mashentseva, A. A. (2025) Development of the all-solid-state flexible supercapacitor membranes via RAFT-mediated grafting and electrospun nano-fiber modification of track-etched membranes. RSC Advances, 15(8), 6260–6280. https://doi.org/10.1039/d4ra08055f

Korolkov, I. V., Gorin, Y. G., Yeszhanov, A. B., Kozlovskiy, A. L., & Zdorovets, M. V. (2018). Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Materials Chemistry and Physics, 205, 55–63. https://doi.org/10.1016/J.MATCHEMPHYS.2017.11.006

Parmanbek, N., Sütekin, D. S., Barsbay, M., Mashentseva, A. A., Zheltov, D. A., Aimanova, N. A., … Zdorovets, M. V. (2022). Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(dimethylamino)ethyl methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers, 14(19), 4026. https://doi.org/10.3390/polym14194026

Barsbay, M., & Güven, O. (2014). Grafting in confined spaces: Functionalization of nanochannels of track-etched mem-branes. Radiation Physics and Chemistry, 105, 26–30. https://doi.org/10.1016/J.RADPHYSCHEM.2014.05.018

Shakayeva, A. K., Yeszhanov, A. B., Zhumazhanova, A. T., Korolkov, I. V., & Zdorovets, M. V. (2024). Fabrication of Hy-drophobic PET Track-Etched Membranes using 2,2,3,3,4,4,4-Heptafluorobutyl Methacrylate for Water Desalination by Membrane Distillation. EURASIAN JOURNAL OF CHEMISTRY, 29(2 (114)), 81–88. https://doi.org/10.31489/2959-0663/2-24-5

Kececi, K. (2023). A Comparable Study of Single Stranded DNA Sensing Using Track-Etched Nanopore Sensors. Chemis-trySelect, 8(37), e202302856. https://doi.org/10.1002/slct.202302856

Maity, S., & Tripathi, B. P. (2024). Nanostructured Zwitterionic Membranes: Harnessing Temperature-Responsive Micro-gels for Tunable Water Filtration and Molecular Separation. ACS Applied Polymer Materials, 6(1), 596–606. https://doi.org/10.1021/acsapm.3c02234

Apel, P. Y. (2025). Intersections of pore channels in track-etched polymer templates and membranes. Materials Chemistry and Physics, 339, 130681. https://doi.org/10.1016/J.MATCHEMPHYS.2025.130681

Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1–6), 559–566. https://doi.org/10.1016/S1350-4487(01)00228-1

Zhang, S., Cheng, J., Shi, W., Li, K. -B., Han, D. -M., & Xu, J. -J. (2020). Fabrication of a Biomimetic Nanochannel Logic Platform and Its Applications in the Intelligent Detection of miRNA Related to Liver Cancer. Analytical Chemistry, 92(8), 5952–5959. https://doi.org/10.1021/acs.analchem.0c00147

Li, M., Xiong, Y., Lu, W., Wang, X., Liu, Y., Na, B., … Qing, G. (2020). Functional Nanochannels for Sensing Tyrosine Phosphorylation. Journal of the American Chemical Society, 142(38), 16324–16333. https://doi.org/10.1021/jacs.0c06510

Li, J., An, P., Qin, C., Sun, C. L., Sun, M., Ji, Z., … Xie, Y. (2020). Bioinspired dual-responsive nanofluidic diodes by poly- l -lysine modification. ACS Omega, 5(9), 4501–4506. https://doi.org/10.1021/acsomega.9b03850

Wang, J., Zhou, Y., & Jiang, L. (2021). Bio-inspired Track-Etched Polymeric Nanochannels: Steady-State Biosensors for Detection of Analytes. ACS Nano, 15(12), 18974–19013. https://doi.org/10.1021/acsnano.1c08582

Armstrong, J. A., Bernal, E. E. L., Yaroshchuk, A., & Bruening, M. L. (2013). Separation of ions using polyelectrolyte-modified nanoporous track-etched membranes. Langmuir, 29(32), 10287–10296. https://doi.org/10.1021/la401934v

Laucirica, G., Toum Terrones, Y., Cayón, V. M., Cortez, M. L., Toimil-Molares, M. E., Trautmann, C., … Azzaroni, O. (2020). High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Na-noscale, 12(35), 18390–18399. https://doi.org/10.1039/D0NR03634J

Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326, 77–95. https://doi.org/10.1016/J.DESAL.2013.06.016

Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., … Koutahzadeh, N. (2019). Nano-composite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purifica-tion Technology, 213, 465–499. https://doi.org/10.1016/j.seppur.2018.12.050

Zhumanazar, N., Korolkov, I. V., Yeszhanov, A. B., Shlimas, D. I., & Zdorovets, M. V. (2023). Electrochemical detection of lead and cadmium ions in water by sensors based on modified track-etched membranes. Sensors and Actuators A: Physical, 354, 114094. https://doi.org/10.1016/J.SNA.2022.114094

Mizuguchi, H., Fujiki, S., Shibata, T., Oishi, M., Iiyama, M., Takayanagi, T., … Yeh, M. H. (2023). A flow-based enzyme-free biosensor fabricated using track-etched membrane electrodes: Selective and sensitive detection of uric acid. Sensors and Ac-tuators B: Chemical, 383, 133588. https://doi.org/10.1016/J.SNB.2023.133588

Habtamu, H. B., Not, T., De Leo, L., Longo, S., Moretto, L. M., & Ugo, P. (2019). Electrochemical Immunosensor Based on Nanoelectrode Ensembles for the Serological Analysis of IgG-type Tissue Transglutaminase. Sensors, 19(5), 1233. https://doi.org/10.3390/s19051233

Kozhina, E., Bedin, S., Martynov, A., Andreev, S., Piryazev, A., Grigoriev, Y., … Naumov, A. (2023). Ultrasensitive Opti-cal Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces. Biosensors, 13(1), 46. https://doi.org/10.3390/BIOS13010046/S1

Zhao, J., Kan, Y., Chen, Z., Li, H., & Zhang, W. (2023). MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids. Biosensors 2023, Vol. 13, Page 284, 13(2), 284. https://doi.org/10.3390/BIOS13020284

Mashentseva, A. A., Sutekin, D. S., Rakisheva, S. R., & Barsbay, M. (2024). Composite Track-Etched Membranes: Synthe-sis and Multifaced Applications. Polymers, 16(18), 2616. https://doi.org/10.3390/polym16182616

Li, J., An, P., Qin, C., Sun, C. L., Sun, M., Ji, Z., … Xie, Y. (2020). Bioinspired dual-responsive nanofluidic diodes by poly- l -lysine modification. ACS Omega, 5(9), 4501–4506. https://doi.org/10.1021/acsomega.9b03850

Soto Espinoza, S., Aguiar, C., Richieri, F., & Grasselli, M. (2019). Track-etched membrane as fluorescence-based pH bio-sensor. Reactive and Functional Polymers, 135, 1–7. https://doi.org/10.1016/j.reactfunctpolym.2018.11.018

Sun, Z., Han, C., Wen, L., Tian, D., Li, H., & Jiang, L. (2012). pH gated glucose responsive biomimetic single nanochan-nels. Chemical Communications, 48(27), 3282. https://doi.org/10.1039/c2cc17277a

Xu, X., Zhao, W., Gao, P., Li, H., Feng, G., Zhao, Z., & Lou, X. (2016). Coordination of the electrical and optical signals re-vealing nanochannels with an ‘onion-like’ gating mechanism and its sensing application. NPG Asia Materials, 8(1), e234–e234. https://doi.org/10.1038/am.2015.138

Wiedenhöft, L., Elleithy, M. M. A., Ulbricht, M., & Schacher, F. H. (2021). Polyelectrolyte functionalisation of track etched membranes: Towards charge-tuneable adsorber materials. Membranes, 11(7). https://doi.org/10.3390/membranes11070509

Qian, T., Zhao, C., Wang, R., Chen, X., Hou, J., Wang, H., & Zhang, H. (2021). Synthetic azobenzene-containing metal–organic framework ion channels toward efficient light-gated ion transport at the subnanoscale. Nanoscale, 13(41), 17396–17403. https://doi.org/10.1039/D1NR04595D

Müller, L. K., Duznovic, I., Tietze, D., Weber, W., Ali, M., Stein, V., … Tietze, A. A. (2020). Ultrasensitive and Selective Copper(II) Detection: Introducing a Bioinspired and Robust Sensor. Chemistry — A European Journal, 26(39), 8511–8517. https://doi.org/10.1002/chem.202001160

Shang, Y., Zhang, Y., Li, P., Lai, J., Kong, X. -Y., Liu, W., … Jiang, L. (2015). DNAzyme tunable lead(ii) gating based on ion-track etched conical nanochannels. Chemical Communications, 51(27), 5979–5981. https://doi.org/10.1039/C5CC00288E

Bessbousse, H., Nandhakumar, I., Decker, M., Barsbay, M., Cuscito, O., Lairez, D., … Wade, Travis. L. (2011). Functional-ized nanoporous track-etched β-PVDF membrane electrodes for lead(ii) determination by square wave anodic stripping voltamme-try. Analytical Methods, 3(6), 1351. https://doi.org/10.1039/c1ay05038a

Barsbay, M., Güven, O., Bessbousse, H., Wade, T. L., Beuneu, F., & Clochard, M. -C. (2013). Nanopore size tuning of pol-ymeric membranes using the RAFT-mediated radical polymerization. Journal of Membrane Science, 445, 135–145. https://doi.org/10.1016/j.memsci.2013.05.029

Zdorovets, M. V., Korolkov, I. V., Yeszhanov, A. B., & Gorin, Y. G. (2019). Functionalization of PET Track-Etched Mem-branes by UV-Induced Graft (co)Polymerization for Detection of Heavy Metal Ions in Water. Polymers, 11(11), 1876. https://doi.org/10.3390/polym11111876

Zhumanazar, N. N., Korolkov, I. V., Eszhanov, A. В., Shakayeva, A. Kh., Tashenov, A. К., & Zdorovets, M. V. (2021). Sen-sors Based on Track-Etched Membranes for Electrochemical Detection of Cadmium Ions. NNC RK Bulletin, (1), 4–8. https://doi.org/10.52676/1729-7885-2021-1-5-8

Omertassov, D. D., Shakayeva, A. Kh., Zhatkanbayeva, Z. K., Shakirzyanov, R. I., Zdorovets, M. V., Güven, O., Korolkov, I. V. (2025). HKUST-1 synthesis in PET Track-Etched membranes via conversion of deposited CU for carbon dioxide capture. ACS Omega, https://doi.org/10.1021/acsomega.5c01493

Bessbousse, H., Zran, N., Fauléau, J., Godin, B., Lemée, V., Wade, T., & Clochard, M. -C. (2016). Poly(4-vinyl pyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water. Radiation Physics and Chemistry, 118, 48–54. https://doi.org/10.1016/j.radphyschem.2015.03.011

Korolkov, I. V., Zhumanazar, N., Gorin, Y. G., Yeszhanov, A. B., & Zdorovets, M. V. (2020). Enhancement of electrochem-ical detection of Pb2+ by sensor based on track-etched membranes modified with interpolyelectrolyte complexes. Journal of Mate-rials Science: Materials in Electronics, 31(22), 20368–20377. https://doi.org/10.1007/s10854-020-04556-4

Laucirica, G., Toum Terrones, Y., Cayón, V. M., Cortez, M. L., Toimil-Molares, M. E., Trautmann, C., … Azzaroni, O. (2020). High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Na-noscale, 12(35), 18390–18399. https://doi.org/10.1039/D0NR03634J

Ali, M., Nasir, S., & Ensinger, W. (2016). Stereoselective detection of amino acids with protein-modified single asymmetric nanopores. Electrochimica Acta, 215, 231–237. https://doi.org/10.1016/j.electacta.2016.08.067

Ahlawat, S., Nehra, A., Pandey, V., & Singh, K. P. (2019). Gold-coated nanoporous polycarbonate track–etched solid plat-form for the rapid detection of mesothelin. Ionics, 25(4), 1887–1896. https://doi.org/10.1007/s11581-018-2761-6

Gaetani, C., Gheno, G., Borroni, M., De Wael, K., Moretto, L. M., & Ugo, P. (2019). Nanoelectrode ensemble immunosens-ing for the electrochemical identification of ovalbumin in works of art. Electrochimica Acta, 312(2019), 72–79. https://doi.org/10.1016/j.electacta.2019.04.118

Mizuguchi, H., Nishimori, D., Kuwabara, T., Takeuchi, M., Iiyama, M., & Takayanagi, T. (2020). Track-etched membrane-based dual-electrode coulometric detector for microbore/capillary high-performance liquid chromatography. Analytica Chimica Acta, 1102, 46–52. https://doi.org/10.1016/j.aca.2019.12.045

Mizuguchi, H., Fujiki, S., Shibata, T., Oishi, M., Iiyama, M., Takayanagi, T., … Yeh, M. H. (2023). A flow-based enzyme-free biosensor fabricated using track-etched membrane electrodes: Selective and sensitive detection of uric acid. Sensors and Ac-tuators B: Chemical, 383(February), 133588. https://doi.org/10.1016/j.snb.2023.133588

Bernhard, M., Diefenbach, M., Biesalski, M., & Laube, B. (2020). Electrical Sensing of Phosphonates by Functional Cou-pling of Phosphonate Binding Protein PhnD to Solid-State Nanopores. ACS Sensors, 5(1), 234–241. https://doi.org/10.1021/acssensors.9b02097

Shakayeva, A. Kh., Munasbaeva, K. K., Zhumazhanova, A. T., Zdorovets, M. V., & Korolkov, I. V. (2023). Electrochemical sensors based on modified track–etched membrane for non-enzymatic glucose determination. Microchemical Journal, 193, 109003. https://doi.org/10.1016/j.microc.2023.109003

Kukushkin, V. I., Kristavchuk, O. V., Zhdanov, G. A., Keshek, A. K., Gambaryan, A. S., Andreev, Y. V., … Zavyalova, E. G. (2023). Aptasensors Based on Track-Etched Membranes Coated with a Nanostructured Silver Layer for Influenza A and B Virus Detection. Bulletin of the Russian Academy of Sciences: Physics, 87(2), 172–177. https://doi.org/10.31857/S0367676522700375

Kukushkin, V., Kristavchuk, O., Andreev, E., Meshcheryakova, N., Zaborova, O., Gambaryan, A., … Zavyalova, E. (2023). Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Frontiers in Bioengineering and Biotechnology, 10, 1076749. https://doi.org/10.3389/fbioe.2022.1076749

Komatsu, T. (2020). Protein-based smart microtubes and nanotubes as ultrasmall biomaterials. Chemistry Letters, 49(10), 1245–1255. https://doi.org/10.1246/cl.200433

Komatsu, T., Qu, X., Ihara, H., Fujihara, M., Azuma, H., & Ikeda, H. (2011). Virus Trap in Human Serum Albumin Nano-tube. Journal of the American Chemical Society, 133(10), 3246–3248. https://doi.org/10.1021/ja1096122

Karch, H., Tarr, P. I., & Bielaszewska, M. (2005). Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology, 295(6–7), 405–418. https://doi.org/10.1016/j.ijmm.2005.06.009

Yuge, S., Akiyama, M., Ishii, M., Namkoong, H., Yagi, K., Nakai, Y., … Komatsu, T. (2017). Glycoprotein Nanotube Traps Influenza Virus. Chemistry Letters, 46(1), 95–97. https://doi.org/10.1246/cl.160805

Wang, C., Wu, Z., Liu, B., Zhang, P., Lu, J., Li, J., … Li, C. (2021). Track-etched membrane microplate and smartphone immunosensing for SARS-CoV-2 neutralizing antibody. Biosensors and Bioelectronics, 192(August), 113550. https://doi.org/10.1016/j.bios.2021.113550

Zhao, Y., Wang, T., Li, Y., Zhao, Z., Xue, J., & Wang, Q. (2024). Fabrication of Breathable Multifunctional On-Skin Elec-tronics Based on Tunable Track-Etched Membranes. ACS Applied Electronic Materials, 6(2), 969–977. https://doi.org/10.1021/acsaelm.3c01414

A Mini Review on Track-Etched Membranes Potential for Sensors Development

Downloads

Published

2025-09-21

How to Cite

Sütekin, S. D., Rakisheva, S. R., Mashentseva, A. A., & Barsbay, M. (2025). A Mini Review on Track-Etched Membranes Potential for Sensors Development. EURASIAN JOURNAL OF CHEMISTRY, 30(3(119), 7–22. https://doi.org/10.31489/2959-0663/3-25-12

Issue

Section

ADVANCED REVIEWS ON TEMs