Comparison of SERS Effect on Composite Track-Etched Membranes with Silver Nanostructures Obtained by Vacuum Deposition and Chemical Synthesis

Authors

  • Evgeny V. Andreev Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
  • Irina N. Fadeikina Joint Institute for Nuclear Research, Dubna, Moscow region, Russia https://orcid.org/0009-0006-5094-6760
  • Alisher К. Mutali Joint Institute for Nuclear Research, Dubna, Moscow region, Russia https://orcid.org/0000-0003-2889-5785
  • Vladimir I. Kukushkin Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia

DOI:

https://doi.org/10.31489/2959-0663/3-25-13

Keywords:

silver nanoparticles, track-etched membranes, vacuum deposition, surface-enhanced Raman scattering, biosensors, nanostructures, sensor system, composite

Abstract

Track-etched membranes (TMs) represent a universal platform for the development of advanced sensor systems due to their tunable pore architecture, chemical functionalization, and compatibility with different nanostructures. In particular, their modification with plasmonic silver nanostructures enables the creation of efficient solid-state substrates for surface-enhanced Raman scattering (SERS), providing high sensitivity and potential for selective analyte detection. Solid substrates based on TMs can be a good compromise for SERS systems. This article is devoted to the study of the SERS effect on track-etched membranes with silver nanostructures. Silver nanostructures on track-etched membranes were obtained by thermal evaporation, magnetron sputtering think silver film with subsequent annealing. Other samples were received by deposition of colloidal silver nanoparticles stabilized with sodium citrate and β-cyclodextrin. 4-aminothiophenol was used as a test substance. All samples exhibited the SERS effect. The intensity of the Raman scattering signal in the obtained samples was compared and enhancement factors and standard deviations were estimated. Samples obtained both by deposition of nanoparticles and by sputtering show high values of the enhancement factors, which will allow them to be used in the future as substrates for biosensors.

References

Apel, P. Y. (2018). Fabrication of functional micro- and nanoporous materials from polymers modified by swift heavy ions. Radiation Physics and Chemistry, 159, 25–34. https://doi.org/10.1016/j.radphyschem.2019.01.009

Apel, P.Yu., Blonskaya, I.V., Dmitriev, S.N., Orelovich, O.L., Sartowska, B.A. (2015). Ion track symmetric and asymmetric nanopores in polyethylene terephthalate foils for versatile applications. Nuclear Instruments and Methods in Physics Research Sec-tion B, 359, 1–7. https://doi.org/10.1016/j.nimb.2015.07.016

Fadeikina, I. N., Andreev, E. V., Kristavchuk, O. V., et al. (2023). Electric Discharge Synthesis of Colloidal Silver Nanopar-ticle Solutions Using Various Modifiers for Immobilization on the Surface of Track-Etched Membranes. Inorganic Materials, 59(3), 337–347. https://doi.org/10.1134/s0020168523030056

Zarubin, M., Andreev, E., Kravchenko, E., et al. (2024). Developing tardigrade-inspired material: Track membranes func-tionalized with Dsup protein for cell-free DNA isolation. Biotechnology Progress. https://doi.org/10.1002/btpr.3478

Yamauchi, Y., Blonskaya, I. V., Apel, P. Y. (2017). Adsorption of nonionic surfactant on porous and nonporous poly(ethylene terephthalate) films. Colloid Journal, 79(5), 707–714. https://doi.org/10.1134/S1061933X17050167

Rossouw, А., Vinogradov, I. I., Serpionov, G. V., Gorberg, B. L., Molokanova L. G., Nechaev A. N. (2022). Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer. Bulletin of the Russian Academy of Sciences: Physics, 86(3), 251–255. https://doi.org/10.1134/S2517751622030039

Ponomareva O.Y., Drozhzhin N.A., Vinogradov I.I., Vershinina T.N., Altynov V.A., Zuba I., Nechaev A.N., Pawlukojć, A. (2024). Metal-organic framework based on nickel, L-tryptophan and 1,2-bis(4-pyridyl)ethylene, consolidated on a track-etched membrane. Bulletin of the Russian Academy of Sciences: Physics, 88(6), 543–547. https://doi.org/:10.31857/S0044457X24060132

Pinaeva, U., Lairez, D., Oral, O., et al. (2019). Early warning sensors for monitoring mercury in water. Journal of Hazardous Materials, 375, 120–128. https://doi.org/10.1016/j.jhazmat.2019.05.023

Pinaeva, U., Dietz, T.C., Sheikhly M. Al. (2019). Bis[2-(methacryloyloxy)ethyl]phosphate radiografted into track-etched PVDF for uranium (VI) determination by means of cathodic stripping voltammetry. Reactive and Functional Polymers, 140, 104–112. https://doi.org/10.1016/j.reactfunctpolym.2019.06.006

Zhumanazar, N., Korolkov, I.V., Yeszhanov, A. B. (2022). Enhancement of electrochemical detection of Pb2+ by sensor based on track-etched membranes modified with interpolyelectrolyte complexes. Sensors and Actuators B: Chemical, 353, 114094. https://doi.org/10.1016/j.sna.2022.114094

Zhumanazar, N., Korolkov, I.V., Yeszhanov, A. B. (2023). Electrochemical sensors based on modified track–etched mem-brane for non-enzymatic glucose determination. Microchemical Journal, 188, 109003. https://doi.org/10.1016/j.microc.2023.109003

Kaya, D., Keçeci, K. (2020). Track-Etched Nanoporous Polymer Membranes as Sensors: A Review. Journal of The Electro-chemical Society, 167(11), 070525. https://doi.org/10.1149/1945-7111/ab67a7

Lin, X., Huang, X., Urmann, K., Xie, X., Hoffmann, M.R. (2019). Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane. ACS Sensors, 4(1), 242–249. https://doi.org/10.1021/acssensors.8b01419

Taurozzi, J.S., Tarabara, V.V. (2006). Support as Flow-Through Optical Sensors for Water Quality Control. Environmental Engineering Science, 24(1), 122–131. https://doi.org/10.1089/ees.2007.24.122

Gao, T., Yachi, T., Shi, X., Sato, R., Sato, C., Yonamine, Y., Kanie, K., Misawa, H., Ijiro, K., Mitomo, H. (2024). Ultrasen-sitive surface-enhanced Raman scattering platform for protein detection via active delivery to nanogaps as a hotspot. ACS Nano, 18(32), 21593–21606. https://doi.org/10.1021/acsnano.9b04224

Pilot, R., Signorini, R., Durante, C., Orian, L., Bhamidipati, M., & Fabris, L. (2019). A Review on Surface-Enhanced Raman Scattering. Biosensors, 9(2), 57. https://doi.org/10.3390/bios9020057

Aroca, R. F., Alvarez-Puebla, R. A., Pieczonka, N., et al. (2005). Surface-enhanced Raman scattering on colloidal nanostructures. Advances in Colloid and Interface Science, 116, 45. https://doi.org/10.1016/j.cis.2005.04.007

Mahanty, S., Majumder, S., Paul, R., Boroujerdi, R., Valsami-Jones, E., Laforsch, C. (2024). A review on nanomaterial-based SERS substrates for sustainable agriculture. Science of The Total Environment, 884, 174252. https://doi.org/10.1016/j.scitotenv.2024.174252

Peng, J., Song, Y., Lin, Y., Huang, Z. (2024). Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review. Nanomaterials, 14(20), 1648. https://doi.org/10.3390/nano14201648

Huang, Y., Yuan, B., Wang, X., Dai, Y., Wang, D., Gong, Z., Chen, J., Shen, L., Fan, M., Li, Z. (2023). Industrial wastewater source tracing: The initiative of SERS spectral signature aided by a one-dimensional convolutional neural network. Water Research, 232, 119662. https://doi.org/10.1016/j.watres.2023.119662

Parnsubsakul, A., Ngoensawat, U., Wutikhun, T., Sukmanee, T., Sapcharoenkun, C., Pienpinijtham, P., & Ekgasit, S. (2020). Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydrate Polymers, 235, 115956. https://doi.org/10.1016/j.carbpol.2020.115956

Zhang, L., Zhang, P., Fang, Y. (2007). An investigation of the surface-enhanced Raman scattering effect from new sub-strates of several kinds of nanowire arrays. Journal of Colloid and Interface Science, 311(2), 502–506. https://doi.org/10.1016/j.jcis.2007.03.024

Ma, J., Zhao, J., Liu, X., Gu, C., Zeng, S., Birowosuto, M. D., Jiang, J., Jiang, T., Wu, K. (2024). Ultrasensitive SERS-based detection of prostate cancer exosome using Cu2O–CuO@Ag composite nanowires. Biosensors and Bioelectronics, 243, 115775. https://doi.org/10.1016/j.bios.2023.115775

Mahanty, S., Majumder, S., Paul, R., et al. (2024). A review on nanomaterial-based SERS substrates for sustainable agricul-ture. Science of The Total Environment, 950, 174252. https://doi.org/10.1016/j.scitotenv.2024.174252

Zhdanov, G., Nyhrikova, E., Meshcheryakova, N. et al. (2022). A Combination of Membrane Filtration and Raman-Active DNA Ligand Greatly Enhances Sensitivity of SERS-Based Aptasensors for Influenza A Virus. Frontiers in Chemistry, 10, 937180. https://doi.org/10.3389/fchem.2022.937180

Wigginton, K. R., & Vikesland, P. J. (2010). Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst, 135(4), 1320–1326. https://doi.org/10.1039/B919270K

Qi, X., Wang, X., Dong, Y., Xie, J., Gui, X., Bai, J., Duan, J., Liu, J., Yao, H. (2022). Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Sensors and Actuators B: Chemical, 364, 120955. https://doi.org/10.1016/j.saa.2022.120955

Zhang, R., Zhang, L., Xie, S., Yang, X., Liu, Y., Wang, M., He, Y. (2025). A simple and rapid preparation of Au-Ag alloy nanourchins flexible membrane for ultrasensitive SERS detection of microplastics in water environment. Sensors and Actuators B: Chemical, 373, 126451. https://doi.org/10.1016/j.saa.2025.126451

Fadeikina, I. N., Andreev, E. V., Yurenkov, D. I., et al. (2024). Synthesis of silver nanoparticles for the production of hybrid track-etched membranes and their further use as sensory materials. Russian Journal of Applied Chemistry, 97(3), 244–250. https://doi.org/10.31857/S0044461824030071

Mashentseva, A.A., Sutekin, D.S., Rakisheva, S.R., Barsbay, M. (2025). Composite Track-Etched Membranes: Synthesis and Multifaced Applications. https://doi.org/10.3390/polym16182616

Kovalets, N. P., Kozhina, E. P., Razumovskaya, I. V., Bedin, S. A., Piryazev, A. A., Grigoriev, Yu. V., Naumov, A. V. (2022). Toward single-molecule surface-enhanced Raman scattering with novel type of metasurfaces synthesized by crack-stretching of metallized track-etched membranes. The Journal of Chemical Physics, 156(3). https://doi.org/10.1063/5.0078451

Lyu, S., Zhang, Y., Du, G., Di, C., Yao, H., Fan, Y., Duan, J., Lei, D. (2023). Double-sided plasmonic metasurface for simul-taneous biomolecular separation and SERS detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121801. https://doi.org/10.1016/j.saa.2022.121801

Rodrigues, D. C., Andrade, G. F. S., Temperini, M. L. A. (2013). SERS performance of gold nanotubes obtained by sputter-ing onto polycarbonate track-etched membranes. Physical Chemistry Chemical Physics, 15(4), 1169–1176. https://doi.org/10.1039/C2CP42994A

Ritchie, G., Burstein, E., Stephens, R.B. (1985). Optical phenomena at a silver surface with submicroscopic bumps. Journal of the Optical Society of America B, 2(4), 544–551.

Kozhina, E. P., Bedin, S. A., Nechaeva, N. L., Podoynitsyn, S. N., Tarakanov, V. P., Andreev, S. N., Grigoriev, Y. V., Naumov, A. V. (2021). Ag-Nanowire bundles with gap hot spots synthesized in track-etched membranes as effective SERS sub-strates. Applied Sciences, 11(4), 1375. https://doi.org/10.3390/app11041375

Kukushkin, V., Kristavchuk, O., Andreev, E., et al. (2023). Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Frontiers in Bioengineering and Biotechnology, 10, 1076749. https://doi.org/10.3389/fbioe.2022.1076749

Fadeikina, I. N., Andreev, E. V., Kristavchuk, O. V., et al. (2023). Electric discharge synthesis of colloidal silver nanoparti-cle solutions using various modifiers for immobilization on the surface of track-etched membranes. Inorganic Materials, 59(3), 337–347. https://doi.org/10.1134/s0020168523030056

Gudmundsson, J. T. (2020). Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology, 29(11), 113001. https://doi.org/10.1088/1361-6595/abb7bd

Glushko, S. P. (2020). Selection of technologies for metal film application using physical deposition techniques. Advanced Engineering Research, 20(3), 280–288. https://doi.org/10.23947/2687-1653-2020-20-3-280-288

Serebrennikova, S. I., Kukushkin, V. I., Morozova, E. N., Astrakhantseva, A. S., Kristavchuk, O. V., & Nechaev, A. N. (2022). Formation of island SERS films on surfaces of track membranes and silicon substrates. Bulletin of the Russian Academy of Sciences: Physics, 86(4), 423–433. https://doi.org/10.3103/S1062873822040207

Fazylov, S. D., Nurkenov, O. A., Nurmaganbetov, Z. S., et al. (2025). Synthesis of β-cyclodextrin-functionalized silver na-noparticles and their application for loading cytisine and its phosphorus derivative. Molecules, 30(6), 1337. https://doi.org/10.3390/molecules30061337

Yang, L., Chen, Y., Li, H., Luo, L., Zhao, Y., Zhanga, H., Tian, Y. (2015). Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal. Methods, 7, 6520–6527. https://doi.org/10.1039/C5AY01212K

Zhu, J., Wu, N., Zhang, F., et al. (2018). SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierar-chical-multishell nanostructure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 754–762. https://doi.org/10.1016/j.saa.2018.06.105

Ratkajec, A., Kenđel, A. (2024). Structural characterization of 4-aminothiophenol in silver and gold colloids using surface-enhanced Raman scattering. Croatica Chemica Acta, 97(20), 77–85. https://doi.org/10.5562/cca4107

Sakir, M., Pekdemir S., Karatay A. et al (2017). Fabrication of plasmonically active substrates using engineered silver nanostructures for SERS applications. ACS Appl. Mater. Interfaces, 9(45), 39795–39803. https://doi.org/10.1021/acsami.7b12279

He, L., Riassetto, D., Bouvier, P., Rapenne, L., Chaix-Pluchery, O., Stambouli, V., Langlet, M. (2014). Controlled growth of silver nanoparticles through a chemically assisted photocatalytic reduction process for SERS substrate applications. Journal of Pho-tochemistry and Photobiology A: Chemistry, 277, 1–11. https://doi.org/10.1016/j.jphotochem.2013.12.003

Comparison of SERS Effect on Composite Track-Etched Membranes with Silver Nanostructures Obtained by Vacuum Deposition and Chemical Synthesis

Downloads

Published

2025-09-21

How to Cite

Andreev, E. V., Fadeikina, I. N., Mutali A. К., & Kukushkin, V. I. (2025). Comparison of SERS Effect on Composite Track-Etched Membranes with Silver Nanostructures Obtained by Vacuum Deposition and Chemical Synthesis. EURASIAN JOURNAL OF CHEMISTRY, 30(3(119), 143–154. https://doi.org/10.31489/2959-0663/3-25-13

Issue

Section

TEMs BASED COMPOSITES AND ITS PRACTICAL APPLICATIONS