Advancing Functionalized Track-Etched Membranes: Composite and Hybrid Materials through the JINR–South Africa Partnership

Authors

DOI:

https://doi.org/10.31489/2959-0663/3-25-14

Keywords:

track-etched membrane, hybrid membranes, nanoparticles, Purification, SERS substrate, radiation grafting, Photocatalysis

Abstract

Track-etched polymer membranes (TeMs) are precision porous materials widely applied in water purification, sensing, and catalysis. However, their practical use is limited by hydrophobicity, fouling, and lack of functional activity. The purpose of this review is to synthesize the outcomes of the long-standing collaboration between South African institutions and the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia (FLNR, JINR), highlighting their contribution to overcoming these challenges. The objective is to present a focused survey of advances in TeMs functionalization, contextualized within global progress, and to assess their implications for applied membrane science. The methodology involved a structured literature survey (2007–2025) across Scopus, Web of Science, and Google Scholar, combined with critical evaluation of collaborative outputs. Emphasis was placed on peer-reviewed studies of metal sputtering, chemical grafting, and electrospun nanofiber composites. Results indicate that these approaches improve TeMs performance by enhancing hydrophilicity, mechanical stability, and catalytic or sensing functionality. Case studies include Ti/TiO2 coatings for self-cleaning membranes, silver/gold nanoparticle-modified TeMs for surface-enhanced Raman spectroscopy, and nanofiber/TeMs hybrids for pollutant adsorption. In conclusion, the JINR — South Africa partnership demonstrates how targeted international collaboration can deliver impactful technologies. Future research should prioritize stimuli-responsive “smart” membranes, MOF-integrated hybrids, and roll-to-roll scale-up for industrial deployment.

References

Fleischer, R. L., Price, P. B., & Walker, R. M. (1965). Tracks of Charged Particles in Solids. Science, 149(3682), 383–393. https://doi.org/10.1126/science.149.3682.383

Flerov, G.N., Apel', P.Y., Didyk, A.Y., Kuznetsov, V.I., Oganesyan, R.T. (1989). Use of heavy-ion accelerators to produce nuclear membranes. At Energy, 67, 763–770. https://doi.org/10.1007/BF01123341

Apel, P. (2001). Track etching technique in membrane technology. Radiat Meas, 34, 559–566 https://doi.org/10.1016/S1350-4487(01)00228-1/

Fischer, B.E., Spohr, R. (1983). Production and use of nuclear tracks: imprinting structure on solids. Rev Mod Phys, 55(4), 907–948. https://doi.org/10.1103/RevModPhys.55.907

Ma, T., Janot, J.M., Balme, S. (2020). Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Meth, 5, 2000366. https://doi.org/10.1002/smtd.202000366

Apel, P. Yu. (2013). Track‐Etching. Encyclopedia of Membrane Science and Technology, 1–25. Portico. https://doi.org/10.1002/9781118522318.emst040

Karl, D. M. (2007). Plastics-irradiated-etched: The Nuclepore® filter turns 45 years old. Limnology and Oceanography Bul-letin, 16(3), 49–54. Portico. https://doi.org/10.1002/lob.200716349

Ulbricht, M. (2006) Advanced functional polymer membranes. Polymer, 47(7), 2217–62. https://doi.org/10.1016/j.polymer.2006.01.084

Ilić, R., Skvarč, J., Golovchenko, A.N. (2003) Nuclear tracks: Present and future perspectives. Radiat Meas, 36, 83–88. https://doi.org/10.1016/S1350-4487(03)00247-6

Arsalan, M., Akhtar, S., & Khan, M. E. (2024). Synthetic composite membranes and their manifold applications: A compre-hensive review. Journal of Polymer Science and Engineering, 7(2), 8211. https://doi.org/10.24294/jpse8211

Mashentseva, A.A., Sutekin, D.S., Rakisheva, S.R., Barsbay, M. (2024) Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers, 16(18), 2616. https://doi.org/10.3390/polym16182616

Vo, T.S., Lwin, K.M. & Kim, K. (2024) Recent developments of nano-enhanced composite membranes designed for wa-ter/wastewater purification—a review. Adv Compos Hybrid Mater, 7, 127. https://doi.org/10.1007/s42114-024-00923-5

Green, L., Ojemaye, C., Petrik, L., Barnes, J., Solomon, N., Beukes, A., Farr, V., Zackon, M. (2025) Contaminant Denialism in Water Governance. Water Resour Res, 61(7) https://doi.org/10.1029/2024WR037875

Rossouw, A. (2022) Planar magnetron sputtering of Ti and TiO2 for polyethylene terephthalate track-etched membrane sur-face modification. Stellenbosch, Stellenbosch University. Available from: https://scholar.sun.ac.za/items/776099bb-a955-4e49-b5fe-3ee44cb35052

Rossouw, A., Kristavchuk, O., Olejniczak, A., Bode-Aluko, C., Gorberg, B., Nechaev, A., Petrik, L., Perold, W., Apel, P.. (2021) Modification of polyethylene terephthalate track etched membranes by planar magnetron sputtered Ti/TiO2 thin films. Thin Solid Films, 725, 138641. https://doi.org/10.1016/j.tsf.2021.138641

Artoshina, O, V., Milovich, F.O., Rossouw, A., Gorberg, B.L., Iskhakova, L.D., Ermakov, R.P., Semina, V.K., Kochnev, Yu.K., Nechaev, A.N., Apel, P.Yu. (2016) Structure and phase composition of thin TiO2 films grown on the surface of metallized track-etched polyethylene terephthalate membranes by reactive magnetron sputtering. Inorg Mater, 52(9), 945–54. https://doi.org/10.1134/S0020168516080021

Artoshina, O.V., Rossouw, A., Semina, V.K., Nechaev, A.N., Apel, P.Yu. (2015). Structural and physicochemical properties of titanium dioxide thin films obtained by reactive magnetron sputtering, on the surface of track-etched membranes. Petrol Chem, 55(10), 759–68. https://doi.org/10.1134/S0965544115100011

Rossouw, A., Olejniczak, A., Olejniczak, K., Gorberg, B., Vinogradov, I., Kristavchuk, O., Nechaev, A., Petrik, L., Perold, W., Dmitriev, S. (2022). Ti and TiO2 magnetron sputtering in roll-to-roll fabrication of hybrid membranes. Surf Interf, 31, 101975. https://doi.org/10.1016/j.surfin.2022.101975

Pereao, O., Uche, C., Bublikov, P.S., Bode-Aluko, C., Rossouw, A., Vinogradov, I.I., Nechaev, A.N., Opeolu, B., Petrik, L. (2021). Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: fabrication and characterization. Mater Today Chem, 20, 100416. https://doi.org/10.1016/j.mtchem.2020.100416

Vinogradov, I.I., Petrik, L., Serpionov, G.V., Nechaev, A.N. (2021) Composite Membrane Based on Track-Etched Mem-brane and Chitosan Nanoscaffold. Membr MembrTechnol, 3(6):400–10. https://doi.org/10.1134/S2517751621060093

Bode-Aluko, C.A., Pereao, O., Ameh. A.E., Omoniyi, E., Nechaev, A., Petrik, L. (2025). Removal of rhodamine 6G from aqueous solution in a continuous mode using nano-micro composite membranes. Nano Trends, 9, 100096. https://doi.org/10.1016/j.nwnano.2025.100096

Ademola Bode-Aluko, C., Pereao, O., Kyaw, H.H., Al-Naamani, L., Al-Abri, M.Z., Tay Zar Myint, M., Rossouw, A., Fato-ba, O., Petrik, L., Dobretsov, S. (2021). Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater Sci Eng, B 264, 114913. https://doi.org/10.1016/j.mseb.2020.114913

Zhang, L., Sun, F., Zuo, Y., Fan, C., Xu, S., Yang, S., Gu, F. (2014). Immobilisation of CdS nanoparticles on chitosan micro-spheres via a photochemical method with enhanced photocatalytic activity in the decolourisation of methyl orange. Appl Catal B, 156–157, 293–300. https://doi.org/10.1016/j.apcatb.2014.03.015

Ndilowe, G.M., Bode-Aluko, C.A., Chimponda, D., Kristavchuk, O., Kochnev, I., Nechaev, A., Petrik, L. (2021). Fabrica-tion of silver-coated PET track-etched membrane as SERS platform for detection of acetaminophen. Colloid Polym Sci, 299(11), 1729–1741. https://doi.org/10.1007/s00396-021-04900-y.

Rossouw, A., Artoshina, O. V., Nechaev, A. N., Apel, P. Yu., Petrik, L., Perold, W. J., & Pineda-Vargas, C. A. (2014). Sta-ble Ion Beam Analysis (RBS and PIXE) Study of Photocatalytic Track-Etched Membranes. Exotic Nuclei, 591–596. https://doi.org/10.1142/9789814632041_0065

Rossouw, A., Vinogradov, I.I., Serpionov, G.V., Gorberg, B.L., Molokanova, L.G., Nechaev, A.N. (2022). Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer. Membr Membr Technol, 4(3), 177–188. https://doi.org/10.1134/S2517751622030039

Ponomareva, O.Y., Drozhzhin, N.A., Vinogradov, I.I., Vershinina, T.N., Altynov, V.A., Zuba. I., Nechaev A.N., Pawlukojć, A. (2024) Metal–Organic Framework Based on Nickel, L-Tryptophan, and 1,2-Bis(4-Pyridyl)Ethylene, Consolidated on a Track-Etched Membrane. Russian J Inorg Chem, 69(6), 914–924. https://doi.org/10.1134/S0036023624600667

Mashentseva, A.A., Barsbay, M., Zdorovets, M. V., Zheltov, D.A., Güven, O. (2020). Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials, 10(8), 1552. https://doi.org/10.3390/nano10081552

Torati, S.R., Reddy, V., Yoon, S.S., Kim, C.G. (2016). Electrochemical biosensor for Mycobacterium tuberculosis DNA de-tection based on gold nanotubes array electrode platform. Biosens Bioelectron, 78, 483–488. https://doi.org/10.1016/j.bios.2015.11.098

Petrik, L.F., Fatoba, O.O., Ndilowe, G.M., Omoniyi, E.O., Chimponda, D., Bode-Aluko, C.A. (2020). Emerging and Persis-tent Contaminants/Pathogens: Monitoring Methods Development. Water Research Commission, Pretoria. WRC Report. Available from: www.wrc.org.za

Bode-Aluko, C.A., Laatikainen, K., Pereao, O., Nechaev, A., Kochnev, I., Rossouw, A., Dobretsov, S., Branger, C., Sarbu, A., Leslie Petrik, L. (2019). Fabrication and characterisation of novel nanofiltration polymeric membrane. Mater Today Commun, 20, 100580. https://doi.org/10.1016/j.mtcomm.2019.100580

Pereao, O., Bode-Aluko, C., Laatikainen, K., Nechaev, A., Petrik, L. (2019). Morphology, Modification and Characterisa-tion of Electrospun Polymer Nanofiber Adsorbent Material Used in Metal Ion Removal. J Polym Environm, 27(9), 1843–1860. https://doi.org/10.1007/s10924-019-01497-w

Mashentseva, A.A., Barsbay, M., Aimanova, N.A., Zdorovets, M.V. (2021). Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes, 11, 60. https://doi.org/10.3390/membranes11010060

Nie, J., Wang, Z., Hu, Q. (2016). Chitosan Hydrogel Structure Modulated by Metal Ions. Sci Rep, 6, 36005. https://doi.org/10.1038/srep36005

Hsu, C.Y., Ajaj, Y., Mahmoud,.ZH., Kamil Ghadir, G., Khalid Alani, Z., Hussein, M.M., Hussein, S.A., Karim, M.M., Al-khalidi, A., Abbas, J.K., Kareem, A.H., Ehsan kianfar. (2024). Adsorption of heavy metal ions use chitosan/graphene nanocompo-sites: A review study. Results Chem, 7, 101332. https://doi.org/10.1016/j.rechem.2024.101332

Pereao, O., Bode-Aluko, C., Fatoba, O., Laatikainen, K., Petrik, L. (2018) Rare earth elements removal techniques from wa-ter/wastewater: a review. Desalination Water Treat, 130, 71–86. https://doi.org/10.5004/dwt.2018.22844

Tshisano, K., Mukaba, J.L., Pereao, O., Mouele, E.S.M., Rossouw, A., Drozhzhin, N., Nechaev, A.N., Tshentu, Z,, Petrik, L., Bladergroen, B. (2025). Functionalized Polyethylene Terephthalate Nanofiber Adsorbents for Prospective Metal Recovery from Spent Lithium-Ion Batteries. Water Air Soil Pollut, 236(6), 1–15. https://doi.org/10.1007/s11270-025-07992-2

Fouda-Mbanga, B.G., Velempini, T., Pillay, K., Tywabi-Ngeva, Z. (2024). Heavy metals removals from wastewater and re-use of the metal loaded adsorbents in various applications: A review. Hybrid Advances, 6, 100193. https://doi.org/10.1016/j.hybadv.2024.100193

Kravets, L.I., Yarmolenko, M.A., Rogachev, A.V., Gainutdinov, R.V., Altynov, V.A., Lizunov, N.E. (2022). Formation of Hydrophobic and Superhydrophobic Coatings on Track-Etched Membrane Surfaces to Create Composite Membranes for Water Desalination. Colloid J, 84(4), 427–444. https://doi.org/10.1134/S1061933X22040081

Mashentseva, A., Borgekov, D., Kislitsin, S., Zdorovets, M., Migunova, A. (2015). Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nucl Instrum Methods Phys Res B, 365, 70–74. https://doi.org/10.1016/j.nimb.2015.07.063

Li, P.F., Xie, R., Jiang, J.C., Meng, T., Yang, M., Ju, X.J., Yang, L., Chu, L.-Y. (2009). Thermo-responsive gating mem-branes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J Membr Sci, 337(1–2), 310–317. https://doi.org/10.1016/j.memsci.2009.04.010

Muslimova, I.B., Zhatkanbayeva, Z.K., Omertasov, D.D., Melnikova, G.B., Yeszhanov, A.B., Güven, O., Chizhik, S.A., Zdorovets, M.V. and Korolkov, I.V. (2023). Stimuli-Responsive Track-Etched Membranes for Separation of Water–Oil Emulsions. Membranes, 13(5), 523. https://doi.org/10.3390/membranes13050523

Adeniyi, O.R. (2015). Swift heavy ion irradiation of polyester and polyolefin polymeric film for gas separation application. University of the Western Cape. Available from: https://hdl.handle.net/10566/14679

George, J.H., Nagel, D., Waller, S., Hill, E., Parri, H.R., Coleman, M.D., Cui, Z., Ye, H. (2018). A closer look at neuron in-teraction with track-etched microporous membranes. Sci Rep, 8, 15552. https://doi.org/10.1038/s41598-018-33710-6

Markov, P.A., Vinogradov, I.I., Kostromina, E., Eremin, P.S., Gilmutdinova, I.R., Kudryashova, I.S., Greben, A., Rachin, A.P., Nechaev , A.N. (2022). A wound dressing based on a track-etched membrane modified by a biopolymer nanoframe: physico-chemical and biological characteristics. Eur Polym J, 181, 111709. https://doi.org/10.1016/j.eurpolymj.2022.111709

Salah, I., Allan, E., Nair, S.P., Parkin, I.P. (2024) Antibacterial performance of a copper nanoparticle thin film. Nano Select, 5(9), 2300134. https://doi.org/10.1002/nano.202300134

Malunga, S.M., Chaukura, N., Mbiriri, C.I., Gwenzi, W., Moyo, M., Kuvarega, A.T. (2022). Visible light photodegradation of methyl orange and Escherichia coli O157:H7 in wastewater. S Afr J Sci, 118(1–2), 10938. https://doi.org/10.17159/sajs.2022/10938

Omertassov, D.D., Shakayeva, A.K., Zhatkanbayeva, Z.K., Shakirzyanov, R.I., Zdorovets, M.V., Güven, O, Korolkov, I.V. (2025). HKUST-1 Synthesis in PET Track-Etched Membranes via Conversion of Deposited Cu for Carbon Dioxide Capture. ACS Omega, 10, 30271. https://doi.org/10.1021/acsomega.5c01493

Lee, D., Lee, Y., Choi, S.S., Lee, S.H., Kim, K.W., Lee, Y. (2019). Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process. Envir Sci Pollut Res, 26(2), 1152–1162. https://doi.org/10.1007/s11356-017-9627-8

Apel, P.Y., Bobreshova, O.V., Volkov, A.V., Volkov, V.V., Nikonenko, V.V., Stenina, I.A., Filippov, A.N., Yampolskii, Yu. P., Yaroslavtsev, A.B. (2019). Prospects of Membrane Science Development. Membr Membr Technol, 2019 1(2), 45–63. https://doi.org/10.1134/S2517751619020021

Surface micrographs of a TeMs + Chitosan + Ni-MOF sample at various magnifications

Downloads

Published

2025-09-21

How to Cite

Rossouw, A., Petrik, L. F., Nechaev, A. N., & Apel, P. Y. (2025). Advancing Functionalized Track-Etched Membranes: Composite and Hybrid Materials through the JINR–South Africa Partnership. EURASIAN JOURNAL OF CHEMISTRY, 30(3(119), 23–39. https://doi.org/10.31489/2959-0663/3-25-14

Issue

Section

ADVANCED REVIEWS ON TEMs